精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=
12
x
(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.
(1)求△AOB的面积;
(2)Q是反比例函数y=
12
x
(x>0)图象上异于点P的另一点,请以Q为圆心,QO 半径画圆与x、y轴分别交于点M、N,连接AN、MB.猜想AN与MB的位置关系,并证明.
分析:(1)首先求出点P在线段AB上,进而得出S△AOB=
1
2
OA×OB=
1
2
×2 PP1×2PP2,即可得出S△AOB=2 PP1×PP2
(2)首先求出△AON∽△MOB,再利用平行线的判定定理,得出即可.
解答:解:(1)点P在线段AB上.理由如下:
∵点O在⊙P上,且∠AOB=90°,
∴AB是⊙P的直径
∴点P在线段AB上.…(2分)
过点P作PP1⊥x轴,PP2⊥y轴,
由题意可知PP1、PP2是△AOB的中位线,
∴S△AOB=
1
2
OA×OB=
1
2
×2 PP1×2PP2=2 PP1×PP2
又∵P是反比例函数y=
12
x
(x>0)图象上的任意一 点,
∴PP1×PP2=xy=12
∴S△AOB=2 PP1×PP2=24.…(4分)

(2)猜想:AN∥MB…(1分)
如图,连接MN,则MN过点Q,且S△MON=S△AOB=24.
∴OA•OB=OM•ON.
OA
OM
=
ON
OB

又∵∠AON=∠MOB,
∴△AON∽△MOB
∴∠OAN=∠OMB
∴AN∥MB…(3分)
点评:此题主要考查了反比例函数的综合应用以及圆的相关性质,相似三角形的判定和性质,三角形的面积公式,平行线的判定等知识,此题不失为丰富灵活的一道好题,难易程度--中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案