精英家教网 > 初中数学 > 题目详情
(2006•吉林)如图,小刚面对黑板坐在椅子上.若把黑板看作矩形,其上的一个字看作点E,过点E的该矩形的高为BC,把小刚眼睛看作点A.现测得:BC=1.41米,视线AC恰与水平线平行,视线AB与AC的夹角为25°,视线AE与AC的夹角为20°.求AC和AE的长(精确到0.1米).
(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47.)

【答案】分析:本题为解直角三角形的应用题,为中考必考知识点,此类题中常综合运用三角函数、勾股定理、解直角三角形知识求解问题.
解答:解:在Rt△ACB中,tan∠BAC=.(2分)
∴AC==3.0(米)(写3不扣分).(4分)

在Rt△ACE中,cos∠EAC=.(6分)
∴AE=≈3.2(米).(8分)
点评:考查解直角三角形锐角三角函数的实际应用.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2006•吉林)如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(6,0)(如图1).
(1)当α=60°时,△CBD的形状是______;
(2)当AH=HC时,求直线FC的解析式;
(3)当α=90°时,(如图2).请探究:经过点D,且以点B为顶点的抛物线,是否经过矩形CFED的对称中心M,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2006•吉林)如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面4.5米(即NC=4.5米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《反比例函数》(06)(解析版) 题型:解答题

(2006•吉林)如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求过点A的反比例函数解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式;
(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG的对称中心,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年吉林省中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•吉林)如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面4.5米(即NC=4.5米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.

查看答案和解析>>

科目:初中数学 来源:2006年吉林省中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•吉林)如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求过点A的反比例函数解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式;
(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG的对称中心,并说明理由.

查看答案和解析>>

同步练习册答案