精英家教网 > 初中数学 > 题目详情
25、已知:如图,△ABC和△DEF都是等腰直角三角板,∠BAC=90°,∠EDF=90°.
(1)请你利用这两块三角板画出BC的中点(用示意图表示);
(2)当我们把△DEF的顶点E与A点重合时,使ED、EF与BC相交,设交点为P、G(点P在点G的左侧),你能否证明BP+CG与PG的关系,请你完成自己的证明.
分析:(1)运用等腰三角形三线合一定理过点A作BC的垂线即可得.
(2)以点A为顶点在∠PAG的内部做∠MAP=∠BAP,在AM上截取AM=AB,连接PM与MG.可证△BAP≌△MAP.
则推证△CAG≌△MAG因此PM+MG>PG.则BP+CG>PG.
解答:解(1)只要能利用其中一块三角板画出BC的中点,则给(1分).
(2)当点E与点A重合,DE与EF和BC相交与P、G时,BP+CG>PG.
证明如下:以点A为顶点在∠PAG的内部做∠MAP=∠BAP,在AM上截取AM=AB,连接PM与MG.(2分)
∴△BAP≌△MAP.(3分)
∵∠BAP+∠CAG=45°∠MAP=∠BAP,
∴∠MAG=∠CAG
又MA=CA,AG=AG
∴△CAG≌△MAG(4分)
因此PM+MG>PG.(5分)
则BP+CG>PG.(6分)
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,在本题中需巧妙作出辅助线,出现全等三角形,此题才可解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案