28. (本题12分)如图,一抛物线的顶点A为(2,-1),交x轴于B、C(B左C右)两点,交y轴于点D,且B(1,0),坐标原点为O,
(1)求抛物线解析式.
(2)连接CD、BD,在x轴上确定点E,使以A、C、E为顶点的三角形与△CBD相似,并求出点E的坐标.
(3)若点M(m,1)是抛物线上对称轴右侧的一点,点Q也在抛物线上,点P在x轴上,是否存在以O、M、P、Q为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
E
P点坐标为(-4,0);(4,0);(4+,0).
解析:解:(1)∵抛物线的顶点A为(2,-1),可设抛物线解析式为y=a(x-2)2-1,
把B(1,0)代入得,a-1=0,解得a=1,
∴y(x-2)2-1=x2-4x+3;
(2)令x=0,得y=3,∴D点坐标为(0,3);
令y=0,得x2-4x+3=0,解得x1=1,x2=3,∴C点坐标为(3,0);
过A作AH⊥x轴,如图,
易得△ODC和△ACH都为等腰直角三角形,BC=2,DC=3,AC=,
∴∠DCB=∠ACH=45°,
当以A、C、E为顶点的三角形与△CBD相似,则∠DCB=∠ACE=45°,
若CE:CB=CA:CD,即CE:2=:3,解得CE=,
∴OE=3-=,则E点坐标为(,0);
若CE:CD=CA:CB,即CE:3=:2,解得CE=3,
∴OE=3-3=0,则E点坐标为(0,0)舍去;
(3)存在.P点坐标为(-4,0);(4,0);(4+,0).
先确定M(2+,1),然后分类讨论:当OP为对角线,则M与Q到x轴的距离相等,都为1,所以Q点在A点,求出AM的解析式,得到与x轴的交点G的坐标,P1与O关于G对称,可得P1坐标;当OM为对角线,则MQ∥x轴,这样可确定Q2的坐标,然后利用平行四边形的性质可确定P2的坐标;同理可得到P3的坐标.
科目:初中数学 来源: 题型:
(本题12分) 如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,,,B点坐标为(4,0).点是边上一点,且.点、分别从、同时出发,以1厘米/秒的速度分别沿、向点运动(当点F运动到点B时,点E随之停止运动),EM、CD的延长线交于点P,FP交AD于点Q.⊙E半径为,设运动时间为秒。
(1)求直线BC的解析式。
(2)当为何值时,?
(3)在(2)问条件下,⊙E与直线PF是否相切;如果相切,加以证明,并求出切点的坐标。如果不相切,说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题12分)如图,点O是等边△ABC内一点,D是△ABC外的一点, ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,连接OD。
(1)求证:△OCD是等边三角形;
(2)当=150°时,试判断△AOD 的形状,并说明理由;
(3)探究:当为多少度时,△AOD是等腰三角形。
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题12分)如图,正方形ABCD的边长是2,边BC在x轴上,边AB在y轴上,,将一把三角尺如图放置,其中M为AD的中点,逆时针旋转三角尺.
(1)当三角尺的一边经过C点时,此时三角尺的另一边和AB边交于点,求此时直线PM的解析式;
(2)继续旋转三角尺,三角尺的一边与x轴交于点G, 三角尺的另一边与AB交于,PM的延长线与CD的延长线交于点F,若三角形GF的面积为4,求此时直线PM的解析式;
(3)当旋转到三角尺的一边经过点B,另一直角边的延长线与x轴交于点G,,求此时三角形GOF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012学年人教版九年级第一学期期末考试数学卷 题型:解答题
(本题12分)如图,已知抛物线y=x2+3与x轴交于点A、B,与直线y=x+b相交于点B、C,直线y=x+b与y轴交于点E.
(1)写出直线BC的解析式;
(2)求△ABC的面积;
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动。设运动时间为t秒,请写出△MNB的面积s与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com