精英家教网 > 初中数学 > 题目详情

如图所示,点是⊙上一点,⊙与⊙相交于两点,,垂足为,分别交⊙、⊙两点,延长交⊙,交的延长线于,连结
【小题1】求证:
【小题2】若,求证:
【小题3】 若,且线段的长是关于的方程的两个实数根,求的长.



【小题1】∵BC⊥AD于D,
∴∠BDA=∠CDA=90°,
∴AB、AC分别为⊙O1、⊙O2的直径.                       
∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°,
∴∠BGD=∠C.                                       
【小题2】∵∠DO2C=45°,∴∠ABD=45°
∵O2D=O2C,
∴∠C=∠O2DC=(180°-∠DO2C)=67.5°,                   
∴∠4=22.5°,·                                           
∵∠O2DC=∠ABD+∠F,
∴∠F=∠4=22.5°,∴AD=AF.                                 
【小题3】∵BF=6CD,∴设CD=k,则BF=6k.
连结AE,则AE⊥AD,∴AE∥BC,
 ∴AE·BF=BD·AF.
又∵在△AO2E和△DO2C中,AO2=DO2
∠AO2E=∠DO2C, O2E=O2C,
∴△AO2E≌△DO2C,∴AE=CD=k,
∴6k2=BD·AF=(BC-CD)(BF-AB).
∵∠BO2A=90°,O2A=O2C,∴BC=AB.
∴6k2=(BC-k)(6k-BC).∴BC2-7kBC+12k2=0,
解得:BC=3k或BC=4k.                                 
当BC=3k,BD=2k.
∵BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根.
∴由根与系数的关系知:BD+BF=2k+6k=8k=4m+2.
整理,得:4m2-12m+29=0.
∵△=(-12)2-4×4×29=-320<0,此方程无实数根.
∴BC=3k(舍).                                         
当BC=4k时,BD=3k.
∴3k+6k=4m+2,18k2=4m2+8,整理,
得:m2-8m+16=0,
解得:m1=m2=4,
∴原方程可化为x2-18x+72=0,
解得:x1=6,x2=12, ∴BD=6,BF=12.

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处,某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号,在当时气象条件下,声波在水中的传播速度是1.5 km/s.
(1)设A到P的距离为xkm,用x表示B,C到P的距离,并求x值;
(2)求静止目标P到海防警戒线a的距离(结果精确到0.01 km).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江津区模拟)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度数;
(2)若OC=3,OA=5,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处,某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号,在当时气象条件下,声波在水中的传播速度是1.5 km/s.
(1)设A到P的距离为xkm,用x表示B,C到P的距离,并求x值;
(2)求静止目标P到海防警戒线a的距离(结果精确到0.01 km).

查看答案和解析>>

科目:初中数学 来源:2008年江苏省扬州市高邮中学教改班招生考试数学试卷(解析版) 题型:解答题

如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处,某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号,在当时气象条件下,声波在水中的传播速度是1.5 km/s.
(1)设A到P的距离为xkm,用x表示B,C到P的距离,并求x值;
(2)求静止目标P到海防警戒线a的距离(结果精确到0.01 km).

查看答案和解析>>

科目:初中数学 来源:2007年浙江省温州市乐清中学自主招生考试数学试卷(解析版) 题型:解答题

如图所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处,某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号,在当时气象条件下,声波在水中的传播速度是1.5 km/s.
(1)设A到P的距离为xkm,用x表示B,C到P的距离,并求x值;
(2)求静止目标P到海防警戒线a的距离(结果精确到0.01 km).

查看答案和解析>>

同步练习册答案