精英家教网 > 初中数学 > 题目详情
17.菱形ABCD的周长为52cm,它的一条对角线长10cm,则另一条对角线的长是24.

分析 先由菱形ABCD的周长求出边长,再根据菱形的性质求出OA,然后由勾股定理求出OB,即可得出BD.

解答 解:如图所示:
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,OA=$\frac{1}{2}$AC=5,OB=$\frac{1}{2}$BD,
∵菱形ABCD的周长为52cm,
∴AB=13,
在Rt△AOB中,根据勾股定理得:OB=$\sqrt{A{B}^{2}-O{A}^{2}}$=$\sqrt{1{3}^{2}-{5}^{2}}$=12,
∴BD=2OB=24.
故答案为:24.

点评 本题考查了菱形的性质以及勾股定理的运用;熟练掌握菱形的性质和运用勾股定理计算是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.计算:
(1)a(a-2b)-(a-b)2;                    
(2)(-a2b2)÷(-ab2)•(-3ab3);
(3)(2a-1)(4a2+3a+1);
(4)(-$\frac{1}{4}$)-1+(-2)2×50-($\frac{1}{2}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.某校对200名学生进行“最爱看电视节目”调查,得到如图扇形统计图,其中最爱看文艺类节目的学生有80人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:
(1)3$\sqrt{3}$-$\sqrt{8}+\sqrt{2}-\sqrt{27}$;
(2)(2$\sqrt{5}+5\sqrt{2})(2\sqrt{5}-5\sqrt{2})-(\sqrt{5}-\sqrt{2})^{2}$(2$\sqrt{5}-5\sqrt{2})-(\sqrt{5}-\sqrt{2})^{2}$-($\sqrt{5}-\sqrt{2})^{2}$2
(3)$\sqrt{\frac{3}{2}}-(\frac{5}{2}\sqrt{\frac{3}{2}}+3\sqrt{\frac{1}{6}}-\sqrt{6})$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算下列各题:
(1)$\sqrt{32}-\sqrt{8}+2\sqrt{\frac{1}{2}}$;              
(2)($\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})+(\sqrt{3}-1)^{2}$($\sqrt{5}-\sqrt{3}$)+($\sqrt{3}-1)^{2}$2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在△ABC中,三个顶点的坐标分别为A(0,-2)、B(2,-3)、C(4,0).
(1)将△ABC沿x轴负方向平移5个单位长度,再沿y轴在正方向平移3个单位长度得到△EFG,求△EFG的三个顶点坐标.
(2)求△EFG的面积.
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:△ABC中,∠C>∠B,AE平分∠BAC.
(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,求出∠DAE的度数;
(2)若△ABC中,∠B=α,∠C=β(α<β),探索∠DAE与α、β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=
30°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的度数大小发生改变吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,大圆的半径为r,直径AB上方两个半圆的直径均为r,下方两个半圆的直径分别为a,b.
(1)求直径AB上方阴影部分的面积S1
(2)用含a,b的代数式表示直径AB下方阴影部分的面积S2=$\frac{1}{4}πab$;
(3)设a=r+c,b=r-c(c>0),那么(  )
(A)S2=S1;(B)S2>S1;(C)S2<S1;(D)S2与S1的大小关系不确定;
(4)请对你在第(3)小题中所作的判断说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在某个奔跑活动中,有一个边长为10m正方形路线图,两名选手甲,乙同时从起点A沿着箭头方向绕路线图奔跑,两人第一次相遇在BC的中点O处,当两名选手第一次在点A处相遇时,选手乙已经跑了200m.

查看答案和解析>>

同步练习册答案