精英家教网 > 初中数学 > 题目详情
18.如图,已知点A(-4,2),B(-1,-2),平行四边形ABCD的对角线交于坐标原点O.
(1)请直接写出点C、D的坐标;
(2)写出从线段AB到线段CD的变换过程;
(3)直接写出平行四边形ABCD的面积.

分析 (1)利用中心对称图形的性质得出C,D两点坐标;
(2)利用平行四边形的性质以及结合平移的性质得出即可;
(3)利用SABCD的可以转化为边长为;5和4的矩形面积,进而求出即可.

解答 解:(1)∵四边形ABCD是平行四边形,
∴四边形ABCD关于O中心对称,
∵A(-4,2),B(-1,-2),
∴C(4,-2),D(1,2);

(2)线段AB到线段CD的变换过程是:绕点O旋转180°;

(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,
A到x轴距离为:2,B到x轴距离为:2,
∴SABCD的可以转化为边长为;5和4的矩形面积,
∴SABCD=5×4=20.

点评 此题主要考查了平行四边形的性质以及中心对称图形的性质,根据题意得出SABCD的可以转化为矩形面积是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为90-$\frac{α}{2}$度(用关于α的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于$\frac{1}{2}$AD的长为半径在AD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:
(1)该班的学生共有60名;
(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;
(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列结论正确的是(  )
A.3a3b-a2b=2
B.单项式-x2的系数是-1
C.使式子$\sqrt{x+2}$有意义的x的取值范围是x>-1
D.若分式$\frac{{a}^{2}-1}{a+1}$的值等于0,则a=±1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级
(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;
(2)求选手A晋级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m<1).
(1)当m=$\frac{1}{4}$时,n=-1;
(2)随着点M的转动,当m从$\frac{1}{3}$变化到$\frac{2}{3}$时,点N相应移动的路径长为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列计算中,不正确的是(  )
A.-2x+3x=xB.6xy2÷2xy=3yC.(-2x2y)3=-6x6y3D.2xy2•(-x)=-2x2y2

查看答案和解析>>

同步练习册答案