分析 根据等边三角形的性质得出AC=CM,CN=CB,∠ACM=∠NCB=60°,求出∠ACN=∠MCB,根据SAS推出△ACN≌△MCB即可.
解答 证明:∵△ACM、CBN是等边三角形,
∴AC=CM,CN=CB,∠ACM=∠NCB=60°,
∴∠ACB=∠MCB=60°+∠MCN,
在△ACN和△MCB中
$\left\{\begin{array}{l}{AC=CM}\\{∠ACN=∠MCB}\\{CN=CB}\end{array}\right.$,
∴△ACN≌△MCB,
∴AN=BM.
点评 题考查了全等三角形的性质和判定,等边三角形的性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 120° | B. | 135° | C. | 150° | D. | 105° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com