分析 (1)由解析式令x=0,y=-$\frac{4}{3}$x+8=8,即B(0,8),令y=0时,x=6,即A(6,0);
(2)直接根据勾股定理即可得出AB的长;
(3)由折叠的性质,可求得AB′与OB′的长,BM=B′M,然后设MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,求出M的坐标.
解答 解:(1)当x=0时,y=-$\frac{4}{3}$x+8=8,即B(0,8),
当y=0时,x=6,即A(6,0).
故答案为:(6,0),(0,8);
(2)∵A(6,0),B(0,8),
∴AB=$\sqrt{{6}^{2}+{8}^{2}}$=10;
(3)由折叠的性质,得:AB=AB′=10,
∴OB′=AB′-OA=10-6=4,
设MO=x,则MB=MB′=8-x,
在Rt△OMB′中,OM2+OB′2=B′M2,
即x2+42=(8-x)2,
解得:x=3,
∴M(0,3),
点评 本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 整数 | B. | 有理数 | C. | 分数 | D. | 无理数 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com