精英家教网 > 初中数学 > 题目详情
勾股定理是一条古老的数学定理,它有很多种证明方法.
(1)请你根据图1填空;勾股定理成立的条件是
直角
直角
三角形,结论是
a2+b2=c2
a2+b2=c2
(三边关系)
(2)以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;
分析:(1)根据图示直接填空;
(2)利用S梯形ABCD=SRt△ABE+SRt△DEC+SRt△AED进行解答.
解答:解:(1)勾股定理指的是在直角三角形中,两直角边的平方的和等于斜边的平方.
故答案是:直角;a2+b2=c2

(2)∵Rt△ABE≌Rt△ECD,
∴∠AEB=∠EDC,
又∵∠EDC+∠DEC=90°,
∴∠AEB+∠DEC=90°,
∴∠AED=90°.
∵S梯形ABCD=SRt△ABE+SRt△DEC+SRt△AED
1
2
(a+b)(a+b)=
1
2
ab+
1
2
ab+
1
2
c2

整理,得a2+b2=c2
点评:本题考查了勾股定理的证明.解答该题时,利用了“数形结合”的数学思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

[问题情境]
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
[定理表述]
请你根据图1中的直角三角形,写出勾股定理内容;
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
请根据图1中直接三角形叙述勾股定理.
精英家教网
以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;
利用图2中的直角梯形,我们可以证明
a+b
c
2
.其证明步骤如下:
∵BC=a+b,AD=
 

又∵在直角梯形ABCD中有BC
 
AD(填大小关系),即
 

a+b
c
2

查看答案和解析>>

科目:初中数学 来源:2011年河北省唐山市玉田县八年级第一学期期中考试数学卷 题型:解答题

『问题情境』勾股定理是一条古老的数学定理,它有多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明.著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其它星球“人”进行第一次“谈话”的语言.
『定理表述』请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述).

『尝试证明』以图1中的直角三角形为基础,可以构造出以ab为底,以ab为高的直角梯形(如图2),请你利用图2,验证勾股定理.

『知识拓展』利用图2中的直角梯形,我们可以证明<.其证明步骤如下:
BCabAD         
又在直角梯形ABCD中,BC    AD(填大小关系),
                     
∴<.

查看答案和解析>>

科目:初中数学 来源:2014届湖北省鄂州市八年级下学期期中考试数学试卷(解析版) 题型:解答题

[问题情境] 勾股定理是一条古老的数学定理,它有很多证明方法,我国汉代数学家赵爽根据弦图利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”带到其他星球作为地球人与其他星球“人”进行第一次“谈话”的语言。

[定理表述] 请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述);

                                        

 

[尝试证明] 以图(1)中的直角三角形为基础可以构造出以a、b为底,以a+b为高的直角梯形如图(2)。请你利用图(2)验证勾股定理;

[知识拓展] 利用图(2)的直角梯形,我们可以证明,其证明步骤如下:

∵BC=a+b,AD=         .

又∵在直角梯形ABCD中有直角腰BC    斜腰AD(填“>”,“<”或“=”),即       

 

查看答案和解析>>

同步练习册答案