【题目】周末,小明乘坐家门口的公交车到和平公园游玩,他先乘坐公交车0.8小时后达到书城,逗留一段时间后继续坐公交车到和平公园,小明出发一段时间后,小明的妈妈不放心,于是驾车沿相同的路线前往和平公园,如图是他们离家的路程与离家时间的关系图,请根据图回答下列问题:
(1)小明家到和平公园的路程为 ,他在书城逗留的时间为 ;
(2)图中点表示的意义是 ;
(3)求小明的妈妈驾车的平均速度(平均速度=).
科目:初中数学 来源: 题型:
【题目】在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)(观察猜想)当点E在AB的中点时,如图1,过点E作EF∥BC,交AC于点F,观察猜想得到线段AE与DB的大小关系是 ;
(2)(探究证明)当点E不是AB的中点时,如图2,上述结论是否成立,如果成立,请写出解答过程,如果不成立,请说明理由;
(3)(拓展延伸)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为2,AE=1,求CD的长(请直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=x2+bx+c经过点(2,-3)和(4,5).
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;
(3)在(2)的条件下,当-2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y= 与y轴交于点A,与直线y=﹣ 交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣ 上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:
①E为AB的中点;
②FC=4DF;
③S△ECF= ;
④当CE⊥BD时,△DFN是等腰三角形.
其中一定正确的是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为、、过点A的直线AD与y轴正半轴交于点D,
求直线AD和BC的解析式;
如图2,点E在直线上且在直线BC上方,当的面积为6时,求E点坐标;
在的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当周长最小时,求周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,同底数幂的乘法法则为:am·an=am+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)·h(n),请根据这种新运算填空:
(1)若h(1)=,则h(2)=________;
(2)若h(1)=k(k≠0),则h(n)·h(2017)=________(用含n和k的代数式表示,其中n为正整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系并证明. (提示:延长CD到G,使得DG=BE)
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西20°的A处,舰艇乙在指挥中心南偏东60°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com