精英家教网 > 初中数学 > 题目详情
在△ABC中,∠ACB=90°,O为AC上的动点.
(1)当OA=AC时,以O为圆心,OA的长为半径的圆与AB交于D,连接CD(如图),则图中相似的三角形有______;
(2)当OA满足AC<OA<AC时,以O为圆心,OA的长为半径的圆交AB于D,交AC的延长线于E(如图).
①请你在图中适当添加一条辅助线,然后找出图中相似三角形(注:相似三角形只限于使用图中的六个字母),并加以证明;
②若⊙O的半径为5,AD=8,求tanB.

【答案】分析:(1)连接CD,易得OA=AC,且AC是圆的直径,根据直径所对的圆周角就得到∠CDB=90°,而∠ACB=90°,所以图中就有三对相似三角形;
(2)①当OA满足AC<OA<AC时,连接DE,则△ADE∽△ACB.AE是圆的直径可以得到∠ADE=90°,再根据已知∠ACB=90°,就可以证明△ADE∽△ACB了.②首先利用勾股定理求出DE,然后利用相似三角形的对应边成比例求出tanB的值了.
解答:解:(1)△ACD∽△ABC,△ACD∽△CBD,△ABC∽△CBD.(3分)

(2)①连接DE,则△ADE∽△ACB,理由如下:(5分)
∵AE是⊙O的直径,
∴∠ADE=90°.(6分)
∵∠ACB=90°,
∴∠ADE=∠ACB.(7分)
∵∠A=∠A,
∴△ADE∽△ACB.(8分)
.(9分)
由①知△ADE∽△ACB,∴.(10分)
.(11分)
.(12分)
点评:此题是探究性试题,要理解OA满足的限制条件,根据条件去探究才能正确得到结论.此题主要考查了相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案