精英家教网 > 初中数学 > 题目详情
如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S?ABCD=24,则k1=  
8

试题分析:利用平行四边形的性质设A(x,y1)、B(x、y2),根据反比例函数的图象关于原点对称的性可知C(﹣x,﹣y1)、D(﹣x、﹣y2);然后由反比例函数图象上点的坐标特征,将点A、B的坐标分别代入它们所在的函数图象的解析式,求得y1=﹣2y2;最后根据S?ABCD=•|2x|=24可以求得k2=y2x=4.
解:在?ABCD中,AB∥CD,AB=CD(平行四边形的对应边平行且相等),故设A(x,y1)、B(x、y2),则根据反比例函数的图象关于原点对称的性质知,C(﹣x,﹣y1)、D(﹣x、﹣y2).

∵A在双曲线y1=﹣上,B在双曲线y2=上,
∴x=﹣,x=
∴﹣=
又∵k1=2k2(k1>0),
∴y1=﹣2y2
∵S?ABCD=24,
•|2x|=6|y2x|=24,
解得,y2x=±4,
∵双曲线y2=位于第一、三象限,
∴k2=4,
∴k1=2k2=8
故答案是:8.
点评:本题考查了反比例函数综合题.根据反比例函数的图象关于原点对称的性质求得点A与点B的纵坐标的数量关系是解答此题的难点.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

是反比例函数,则k必须满足(  )
A.k≠3B.k≠0
C.k≠3或k≠0D.k≠3且k≠0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M3…,Mn,则=  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

类比二次函数的图象的平移,我们对反比例函数的图象作类似的变换:
(1)将y=的图象向右平移1个单位,所得图象的函数表达式为 _________ ,再向上平移1个单位,所得图象的函数表达式为 _________ 
(2)函数y=的图象可由y=的图象向 _________ 平移 _________ 个单位得到;y=的图象可由哪个反比例函数的图象经过怎样的变换得到;
(3)一般地,函数y=(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点M是反比例函数)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(  )
A.1B.2 C.4D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知直线y=x+2与坐标轴交于A、B两点,与双曲线y=交于点C,A、D关于y轴对称,若S四边形OBCD=6,则k=  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=  . (用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线x=t(t>0)与反比例函数的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为(  )

A.3        B.          C.         D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两个反比例函数在第一象限内的图象,如图,点P1,P2,P3,…,P2005在反比例函数图象上,它们的横坐标分别为x1,x2,x3,…,x2005,纵坐标分别为1,3,5,…,共2005个连续奇数,过点P1,P2,P3,…,P2005分别作y轴的平行线,与的图象交点,依次是Q1(x1,y1),Q1(x2,y2),Q1(x3,y3),…,Q1(x2005,y2005),求y2005的值.

查看答案和解析>>

同步练习册答案