精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点O以1米/精英家教网秒的速度从点C出发,沿CB向点B移动,设P、O两点移动t秒(0<t<5)后,四边形ABOP的面积为S平方米.
(1)求cos∠ACB的值;
(2)求面积S与时间t的关系式;
(3)在P、O两点移动的过程中,能否使△CPO与△ABC相似?若能,求出此时点P的位置;若不能,请说明理由.
分析:(1)利用解直角三角形的性质,cos∠ACB等于∠ACB的邻边除以斜边得出即可;
(2)首先表示出△POC的面积,再利用△ABC减去△POC的面积即可得出答案.
(3)根据△CPO与△ABC相似,则要考虑以下2种情况:①∠POC=90°,②∠OPC=90°,分别求出即可.
解答:解:(1)∵在矩形ABCD中,AB=6米,BC=8米,
∴AC=
62+82
=10m,
∴cos∠ACB=
BC
AC
=
8
10
=
4
5


(2)过点P作PF⊥BC,
∴PF∥AB,
PC
AC
=
PF
AB

∵动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点O以1米/秒的速度从点C出发,
10-2t
10
=
PF
6

∴PF=
30-6t
5

∴S△POC=
1
2
×t×
30-6t
5
=
15t-3t2
5

精英家教网四边形ABOP的面积为:S=
1
2
×6×8-
15t-3t2
5
=
3
5
t2-3t+24;

(3)若△CPO与△ABC相似,则有以下2种情况:
①∠POC=90°
∵∠ABC=90°,
∴PO∥AB,
CO
BC
=
PC
AC

t
8
=
10-2t
10

解得:t=
40
13
精英家教网
此时,PO=
3
5
(10-2t)=
30
13
,OB=8-t=
64
13

以B为原点,
P(
64
13
30
13
)

②∠OPC=90°
过P作OP⊥AC于P,
PC
BC
=
OC
AC

10-2t
8
=
t
10
精英家教网
解得,t=
25
7

此时,PE=
3
5
(10-2t)=
12
7
,BE=8-t=
31
7

以B为原点,∴P(
31
7
12
7
)

综上所述,满足条件的P点的坐标为 (
64
13
30
13
)
(
31
7
12
7
)
点评:此题主要考查了相似三角形的判定和性质,勾股定理、三角形的面积计算、点的坐标等知识点,要注意第三问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案