精英家教网 > 初中数学 > 题目详情
21、已知如图,梯形ABCD中,AB∥CD,△COD与△AOB的周长比为1:2,则CD:AB=
1:2
,S△COB:S△COD=
2:1
分析:先证明△COD与△AOB相似,再根据相似三角形周长的比等于相似比,CD:AB就是△COD与△AOB的相似比;△COB,△COD是等高三角形,所以面积的比等于底边BO与OD的比.
解答:解:∵AB∥CD,
∴△COD∽△AOB,
∵△COD与△AOB的周长比为1:2,
∴CD:AB=1:2;
∵△COB,△COD是等高三角形,
又BO:OD=AB:CD=2:1,
∴S△COB:S△COD=BO:OD=2:1.
故应填:1:2;2:1.
点评:本题主要考查相似三角形周长的比等于相似比的性质和等高的三角形的面积的比等于底边的比的性质,需要熟练掌握并灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•通州区一模)已知如图,在△ABC中,AB=AC,∠ABC=α,将△ABC以点B为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE,点B、A、E恰好在同一条直线上,连接CE.
(1)则四边形DBCE是
形(填写:平行四边形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,请你求出四边形DBCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,等腰梯形ABCD的边BCx轴上,点Ay轴的正方向上,A( 0, 6 ),D ( 4,6),且AB=.

(1)求点B的坐标;

(2)求经过(  )

A. B.D三点的抛物线的解析式;

(3)在(2)中所求的抛物线上是否存在一点P,使得S△ABC  = S梯形ABCD  ?若存在,请求出该点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,在△ABC中,AB=AC,∠ABC=α,将△ABC以点B为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE,点BAE恰好在同一条直线上,连结CE.

(1)则四边形DBCE是_______形(填写:平行四边形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,请你求出四边形DBCE的面积.

 

查看答案和解析>>

科目:初中数学 来源:2012届北京市通州区九年级中考一模数学卷(带解析) 题型:解答题

已知如图,在△ABC中,AB=AC,∠ABC=α,将△ABC以点B为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE,点BAE恰好在同一条直线上,连结CE.

(1)则四边形DBCE是_______形(填写:平行四边形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=,请你求出四边形DBCE的面积.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市通州区九年级中考一模数学卷(解析版) 题型:解答题

已知如图,在△ABC中,AB=AC,∠ABC=α,将△ABC以点B为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE,点BAE恰好在同一条直线上,连结CE.

(1)则四边形DBCE是_______形(填写:平行四边形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,请你求出四边形DBCE的面积.

 

查看答案和解析>>

同步练习册答案