精英家教网 > 初中数学 > 题目详情
12.如图,把宽为3cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,若△PFH的周长为16cm,则长方形ABCD的面积为48cm2

分析 先依据翻折的性质求得矩形的长,然后在依据矩形的面积公式求解即可.

解答 解:由翻折的性质可知:BF=PF,PH=CH.
∵△PFH的周长为16cm,
∴BF+FH+HC=16,即BC=16cm.
∴S矩形ABCD=AB•BC=16×3=48cm2
故答案为:48cm2

点评 本题主要考查的是翻折的性质,依据翻折的性质将△PFH的周长转化为CB的长是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.解方程组:
(1)$\left\{\begin{array}{l}{3x-2y=13}\\{2x+y=4}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{\frac{x-3y}{4}+\frac{y+5}{3}=2x-7}\\{10(x-y)-4(1-x)=3y}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.适合下列条件的△ABC中,直角三角形的个数为(  )
①a=$\frac{1}{3}$,b=$\frac{1}{4}$,c=$\frac{1}{5}$;    
②a=6,b=8,c=10;    
③a=7,b=24,c=25;        
④a=2,b=3,c=4.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某商场有A、B两种商品,每件的进价分别为15元、35元.商场销售5件A商品和1件B商品,可获得利润35元;销售6件A商品和3件B商品,可获得利润60元.
(1)求A、B两种商品的销售单价;
(2)如果该商场计划最多投入2 000元用于购进A、B两种商品共80件,那么购进A种商品的件数应满足怎样的条件?
(3)现该商场对A、B两种商品进行优惠促销,优惠措施如表所示:
打折前一次性购物总金额优惠措施
不超过500元售价打九折
超过500元售价打八折
如果一次性付款432元同时购买A、B两种商品,求商场获得的最小利润和最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在矩形ABCD中,AE平分∠BAD交BC于点E,CE=1,∠CAE=15°,则BE等于$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,给出如下的判断:
①四边形ABCD为平行四边形;
②BD的长度增大;
③四边形ABCD的面积不变;
④四边形ABCD的周长不变.
其中正确的序号是①②④.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图是一个由7个同样的立方体叠成的几何体,请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下面的文字,解答问题.大家都知道$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能写出来,于是小明用$\sqrt{2}$-1来表示$\sqrt{2}$的小数部分.
事实上,小明的表示方法是有道理的,因为$\sqrt{2}$的整数部分是1,用这个数减去其整数部分,差就是小数部分,所以$\sqrt{2}$-1是$\sqrt{2}$的小数部分.
请解答:
(1)你能求出$\sqrt{5}$+2的整数部分a和小数部分b吗?并求ab的值;
(2)已知10+$\sqrt{3}$=x+y,其中x是整数,且0<y<1,请求出x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.2015年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是5.18×1010

查看答案和解析>>

同步练习册答案