精英家教网 > 初中数学 > 题目详情
12.已知:|x-3|+(y-4)2+$\sqrt{x+y+z}$=0,求(2x+z)y的值.

分析 根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.

解答 解:由题意得,x-3=0,y-4=0,x+y+z=0,
解得x=3,y=4,z=-7,
所以,(2x+z)y=(2×3-7)4=1.

点评 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,连接BB′,则sin∠ABB′=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.为了了解萧山区2014年数学学业考试各分数段成绩分布情况,从中抽取 1500名考生的学业考试数学成绩进行统计分析.在这个问题中,样本容量是指(  )
A.1500
B.被抽取的1500名考生
C.被抽取的1500名考生的学业考试数学成绩
D.义乌市2013年学业考试数学成绩

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.解方程组$\left\{\begin{array}{l}{x+y+z=36\\;①}\\{x-y=1\\;②}\\{2x+z-y=18\\;③}\end{array}\right.$时,把①+②,可立即得到一个二元一次方程2x+z=37.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知有理数x,y,z满足(|x+1|+|x-2|)(|y-1|+|y-3|)(|z-1|+|z+2|)=18,求x+2y+3z的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某超市销售有甲、乙两种商品,五月份该超市同时一次购进甲、乙两种商品共80件,购进甲种商品用去400元,购进乙种商品用去1200元
(1)若购进甲、乙两种商品的数量相同,求两种商品的进价分别是多少元?
(2)由于甲、乙这两种商品受到市民欢迎,六月份超市决定再次购进甲、乙两种商品共80件,且保持进价不变,已知甲种商品每件的售价15元,乙种商品每件的售价40元.要使六月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.给出如下两个方程,方程ax2-x-1=0①;方程a(ax2-1)2-x-1=0②;
(1)证明方程①的实根都是方程②的实根;
(2)如果方程①和②的实根相同,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.解不等式组$\left\{\begin{array}{l}{2x+3≤1}\\{x>\frac{1}{2}(x-3)}\end{array}\right.$的解集在数轴上表示正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1:在平面直角坐标系xOy中,M为x轴正半轴上一点,⊙M与x轴交于A、B两点,与 y轴交于C、D两点,若点M的坐标为(2,0),B点的坐标为(6,0).
(1)求C点的坐标;
(2)如图2连接AC,若E为⊙M上一点,且弦AE长为$4\sqrt{2}$,求∠EAC的度数.
(3)如图3:K、L分别为 $\widehat{BC}$、$\widehat{BD}$上的动点,连接AK,BC交于点R,AL、BD交于点G,若∠KAL=60°  现给出两个结论:①△ARG的周长不变;②△BRG的周长不变.其中有一个结论正确,请选择正确结论并求值.

查看答案和解析>>

同步练习册答案