精英家教网 > 初中数学 > 题目详情
如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=______°.
∵AD是等边△ABC的中线,
∴AD⊥BC,∠BAD=∠CAD=
1
2
∠BAC=
1
2
×60°=30°,
∴∠ADC=90°,
∵AD=AE,
∴∠ADE=∠AED=
180°-∠CAD
2
=75°,
∴∠EDC=∠ADC-∠ADE=90°-75°=15°.
故答案为:15.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

等边三角形的面积为8
3
,它的高为(  )
A.2
2
B.4
3
C.2
6
D.2
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等边三角形ABC中,AB=4,点P是AB上的一个动点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,设BP=x,AQ=y.
(1)写出y与x之间的函数关系式及自变量x的取值范围;
(2)当BP的长等于多少时,点P与点Q重合;
(3)用x的代数式表示PQ的长(不必写出解题过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角坐标系中,点A的坐标为(a,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>a>0),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)求证:OC=AD.
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.
(3)当C点运动到使OA:AC=1:3时,求出此时D点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°.点D是直线BC上的一个动点,连接AD,并以AD为边在AD的右侧作等边△ADE.
(1)如图①,当点E恰好在线段BC上时,请判断线段DE和BE的数量关系,并结合图①证明你的结论;
(2)当点E不在直线BC上时,连接BE,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论;
(3)若AC=3,点D在直线BC上移动的过程中,是否存在以A、C、D、E为顶点的四边形是梯形?如果存在,直接写出线段CD的长度;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在边长为20cm的等边三角形ABC纸片中,以顶点C为圆心,以此三角形的高为半径画弧分别交AC、BC于点D、E,则扇形CDE所围的圆锥(不计接缝)的底圆半径为(  )
A.
5
3
3
cm
B.
10
3
3
cm
C.5
3
cm
D.10
3
cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:△ABC是等边三角形?
(1)若AD=BE=CF,求证△DEF是等边三角形.?
(2)请问(1)的逆命题成立吗?若成立,请证明,若不成立,请用反例说明?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是(  )
A.(2,1)B.(1,2)C.(
3
,1)
D.(1,
3

查看答案和解析>>

同步练习册答案