精英家教网 > 初中数学 > 题目详情
(2008•北京)已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

【答案】分析:(1)本题的突破口在于利用△.化简得出(m+2)2>0得出△>0.
(2)由求根公式得出x的解,由y=x2-2x1求出关于m的解析式.
解答:(1)证明:∵mx2-(3m+2)x+2m+2=0是关于x的一元二次方程,
∴△=[-(3m+2)]2-4m(2m+2)=m2+4m+4=(m+2)2
∵当m>0时,(m+2)2>0,即△>0.
∴方程有两个不相等的实数根.(2分)

(2)解:由求根公式,得
或x=1.(3分)
∵m>0,

∵x1<x2
∴x1=1,.(4分)
∴y=x2-2x1=-2×1=
即y=(m>0)为所求.(5分)

(3)解:在同一平面直角坐标系中分别画出y=(m>0)与y=2m(m>0)的图象.(6分)

由图象可得,当m≥1时,y≤2m.(7分)
点评:本题是一道代数综合题,综合了一元二次方程、一次函数、用函数的观点看不等式等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2008•北京)已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前知识点回归+巩固 专题12 反比例函数(解析版) 题型:解答题

(2008•北京)已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

查看答案和解析>>

科目:初中数学 来源:2010年山东省淄博市中考数学模拟试卷(一)(解析版) 题型:解答题

(2008•北京)已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省某市新人教版中考数学模拟试卷(10)(解析版) 题型:解答题

(2008•北京)已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

查看答案和解析>>

同步练习册答案