精英家教网 > 初中数学 > 题目详情
17.计算:
(1)$\frac{1}{2}$$\sqrt{10}$×(3$\sqrt{15}$-5$\sqrt{\frac{3}{5}}$);
(2)$\sqrt{18}$-$\sqrt{\frac{9}{2}}$-$\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}$+$\sqrt{(\sqrt{2}-1)^{2}}$.

分析 (1)先化简二次根式,在合并括号内二次根式,最后计算乘法即可;
(2)先化简各二次根式,再去括号计算二次根式的加减法.

解答 解:(1)原式=$\frac{\sqrt{10}}{2}$×(3$\sqrt{15}$-$\sqrt{15}$)
=$\frac{\sqrt{10}}{2}$×2$\sqrt{15}$
=5$\sqrt{6}$;

(2)原式=3$\sqrt{2}$-$\frac{3\sqrt{2}}{2}$-(1+$\sqrt{2}$)+$\sqrt{2}$-1
=$\frac{3\sqrt{2}}{2}$-1-$\sqrt{2}$+$\sqrt{2}$-1
=$\frac{3\sqrt{2}}{2}$-2.

点评 本题主要考查二次根式的混合运算,二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.函数y=(k+1)x+k2-1中,当k满足k≠-1时,它是一次函数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,点P是∠BAC的角平分线上的一点,若PE⊥AB,PF⊥AC,垂足分别为点E、F,则PE=PF.理由是角平分线上的点到角的两边的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,坐标网格中的每个正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上,点A是坐标原点,AC在x轴的正半轴上.
(1)把△ABC绕点A顺时针旋转90°得到△AB′C′,画出△AB′C′;
(2)把△ABC先向下平移2个单位,再以y轴为对称轴作轴对称变换到△A″B″C″,分别写出点A,B,C的对应点A″,B″,C″的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在Rt△ABC中,∠C=90°,a=5,c=13,则b的长为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:(3-x)0-2-2=$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在梯形ABCD中,AB∥CD,AD⊥AB,AB=12,CD=9,点M从点A出发,以每秒2个单位长度的速度向点B运动,同时,点N从点C出发,以每秒1个单位长度的速度向点D运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AB于点P,连接BD交NP于点Q,连接MQ.设运动时间为t秒.
(1)BM=12-2t,BP=3+t;(用含t的代数式表示)
(2)若t=3,试判断四边形BNDP的形状;
(3)如图2,将△BQM沿AB翻折,得△BKM.
①是否存在某时刻t,使四边形BQMK为菱形,若存在,求出t的值,若不存在,请说明理由;
②在①的条件下,要使四边形BQMK为正方形,则BD=12$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:$\frac{{x}^{2}-2x}{{x}^{2}-4}$÷(x-2-$\frac{2x-4}{x+2}$),其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在平面直角坐标系中,如果点M(-1,a-1)在第三象限,那么a的取值范围是a<1.

查看答案和解析>>

同步练习册答案