4£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx-3ÓëÖ±Ïßy=x½»ÓÚA£¬BÁ½µã£¬ÇÒA£¬BÁ½µãµÄºá×ø±ê·Ö±ðΪ-1ºÍ3£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽºÍ¹ýBµãµÄ·´±ÈÀýº¯Êý½âÎöʽ£»
£¨2£©ÔÚµÚËÄÏóÏÞµÄÅ×ÎïÏßÉÏÓÐÒ»¶¯µãM£¬Á¬½ÓOM£¬BM£¬Çó¡÷BOMµÄ×î´óÃæ»ý£¬²¢Çó³ö´ËʱMµãµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©ÖС÷BOMÊÇ×î´óÃæ»ýµÄÇé¿öÏ£¬ÔÚ¹ýBµãµÄ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬ÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃ¡÷BOPµÄÃæ»ýÓë¡÷BOMµÄÃæ»ýÏàµÈ£¿Èô´æÔÚ£¬ÇëÇó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâÇó³öA¡¢BÁ½µã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©ÉèM£¨m£¬m2-m-3£©£¬ÔòH£¨m£¬m£©£¬×÷MH¡ÎyÖᣬ½»ABÓÚH£®¸ù¾ÝS¡÷MOB=S¡÷MHO+S¡÷MHB¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌâ¼´¿É£®
£¨3£©ÇéÐ΢ÙÈçͼ¹ýM×÷ABµÄƽÐÐÏß½»Å×ÎïÏßÓÚP1¡¢P2Ôò¡÷P1OBºÍ¡÷P2OBÓë¡÷MOBÃæ»ýÏàµÈ£®ÇéÐ΢ÚÉèM¹ØÓÚÔ­µãµÄ¶Ô³ÆµãM¡ä£¨-1£¬3£©£¬¹ýM¡äƽÐÐABµÄÖ±ÏߵĽâÎöʽΪy=x+4£¬¸ÃÖ±ÏßÓëÅ×ÎïÏß½»ÓÚP3£¬P4£¬Ôò¡÷P3OBºÍ¡÷P4OBÓë¡÷MOBÃæ»ýÏàµÈ£®ÀûÓ÷½³Ì×é·Ö±ðÇó³öPµÄ×ø±ê¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖªA£¨-1£¬-1£©£¬B£¨3£¬3£©£¬
°ÑA£¨-1£¬-1£©£¬B£¨3£¬3£©´úÈëy=ax2+bx-3µÃ$\left\{\begin{array}{l}{a-b-3=-1}\\{9a+3b-3=3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-x-3£®
Éè·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{k}{x}$£¬°ÑB£¨3£¬3£©´úÈëµÃk=9£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{9}{x}$£®

£¨2£©ÉèM£¨m£¬m2-m-3£©£¬ÔòH£¨m£¬m£©£¬×÷MH¡ÎyÖᣬ½»ABÓÚH£®
¡ßS¡÷MOB=S¡÷MHO+S¡÷MHB£¬
¡àS¡÷MOB=$\frac{1}{2}$•£¨m-m2+m+3£©•3=-$\frac{3}{2}$£¨m-1£©2+2£¬
¡ß-$\frac{3}{2}$£¼0£¬
¡àm=1ʱ£¬¡÷MOBµÄÃæ»ý×î´ó£¬Ãæ»ý×î´óֵΪ2£®
´ËʱM£¨1£¬-3£©£®

£¨3£©Èçͼ¹ýM×÷ABµÄƽÐÐÏß½»Å×ÎïÏßÓÚP1¡¢P2Ôò¡÷P1OBºÍ¡÷P2OBÓë¡÷MOBÃæ»ýÏàµÈ£®
¡ßÖ±ÏßABµÄ½âÎöʽΪy=x£¬M£¨1£¬-3£©£¬
¡àÖ±ÏßP1P2µÄ½âÎöʽΪy=x-4£¬
ÓÉ$\left\{\begin{array}{l}{y=x-4}\\{y=\frac{9}{x}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=2+\sqrt{13}}\\{y=\sqrt{13}-2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=2-\sqrt{13}}\\{y=-6-\sqrt{13}}\end{array}\right.$£¬
¡àP1£¨2+$\sqrt{13}$£¬$\sqrt{13}$-2£©£¬P2£¨2-$\sqrt{13}$£¬-6-$\sqrt{13}$£©£®
ÉèM¹ØÓÚÔ­µãµÄ¶Ô³ÆµãM¡ä£¨-1£¬3£©£¬
¹ýM¡äƽÐÐABµÄÖ±ÏߵĽâÎöʽΪy=x+4£¬¸ÃÖ±ÏßÓëÅ×ÎïÏß½»ÓÚP3£¬P4£¬Ôò¡÷P3OBºÍ¡÷P4OBÓë¡÷MOBÃæ»ýÏàµÈ£®

ÓÉ$\left\{\begin{array}{l}{y=x+4}\\{y=\frac{9}{x}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=-2+\sqrt{13}}\\{y=2+\sqrt{13}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-2-\sqrt{13}}\\{y=2-\sqrt{13}}\end{array}\right.$£¬
¡àP3£¨-2+$\sqrt{13}$£¬2+$\sqrt{13}$£©£¬P4£¨-2-$\sqrt{13}$£¬2-$\sqrt{13}$£©£®
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãP×ø±êΪ£¨2+$\sqrt{13}$£¬$\sqrt{13}$-2£©»ò£¨2-$\sqrt{13}$£¬-6-$\sqrt{13}$£©»ò£¨-2+$\sqrt{13}$£¬2+$\sqrt{13}$£©»ò£¨-2-$\sqrt{13}$£¬2-$\sqrt{13}$£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢·´±ÈÀýº¯Êý¡¢Èý½ÇÐÎÃæ»ýµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬עÒ⿼ÂÇÎÊÌâҪȫÃ棬²»ÄÜ©½â£¬Ñ§»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬ADÊÇ¡÷ABCµÄ½Çƽ·ÖÏߣ¬DE¡¢DF·Ö±ðÊÇ¡÷ABDºÍ¡÷ADCµÄ¸ß£¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©¸ö
£¨1£©EF´¹Ö±Æ½·ÖAD
£¨2£©DE=DF
£¨3£©$\frac{DB}{DC}$=$\frac{AB}{AC}$
£¨4£©ËıßÐÎAEDFµÄÃæ»ýÊÇ¡÷ABCÃæ»ýµÄÒ»°ë£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èç¹ûx+y=2£¬xy=3£¬Ôòx2+y2+6xy=16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èç¹û¶þ´ÎÈýÏîʽx2-6mx+9ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÄÇômµÄֵΪ¡À1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ®ÒÑÖªA£¨0£¬4£©£®B£¨-2£¬0£©ÔÚ×ø±êÖáÉÏÈ·¶¨µãP£®Ê¹¡÷AOPÓë¡÷AOBÏàËÆ£®Ôò·ûºÏÌõ¼þµÄµãP¹²ÓУ¨¡¡¡¡£©
A£®6¸öB£®5¸öC£®4¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÈçͼËùʾ£¬A£¬BÊÇ×ø±êÖáÕý°ëÖáÉϵÄÁ½µã£¬¹ýµãB×÷PB¡ÍyÖύ˫ÇúÏßy=$\frac{6}{x}$£¨x£¾0£©ÓÚPµã£¬A£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨1£¬0£©£¬£¨0£¬3£©£¬xÖáÉϵĶ¯µãMÔÚµãAµÄÓҲ࣬¶¯µãNÔÚÉäÏßBPÉÏ£¬¹ýµãA×÷ABµÄ´¹Ïߣ¬½»ÉäÏßBPÓÚDµã£¬½»Ö±ÏßMNÓÚQµã£¬Á¬½áBQ£¬È¡BQµÄÖеãC£¬ÈôÒÔA£¬C£¬N£¬QΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÔòQµãµÄ×ø±êΪ£¨4£¬1£©»ò£¨28£¬9£©£®
 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬Ò»¿é³¤Îªa£¬¿íΪbµÄ³¤·½ÐβÝƺ£¬ÉÏÏ¿ª±ÙµÄ»¨Ô°£¬¶¼ÊÇÓɵȰ뾶µÄÁ½¸öËÄ·ÖÖ®Ò»Ô²ºÍÒ»¸ö°ëÔ²×é³É£¬ÄÇôÖмä²ÝƺµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®ab-¦Ðb2B£®ab-$\frac{¦Ð}{2}$b2C£®ab-$\frac{¦Ð}{4}$b2D£®ab-$\frac{¦Ð}{8}$b2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªab£¾0£¬bc£¼0£¬ÔòÖ±Ïßy=-$\frac{a}{b}$x+$\frac{a}{c}$¾­¹ýµÄÏóÏÞΪ£¨¡¡¡¡£©
A£®Ò»¡¢¶þ¡¢ÈýB£®Ò»¡¢¶þ¡¢ËÄC£®¶þ¡¢Èý¡¢ËÄD£®Ò»¡¢¶þ¡¢ËÄ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÈçͼÊÇÒ»¸ö¼ÆËã»úÖеļÆËã³ÌÐò£¬¸ù¾ÝËüµÄ³ÌÐòÍê³ÉÏÂÁи÷Ì⣮
£¨1£©ÈôÊäÈëÊý¾ÝΪ-3£¬Êä³öµÄÊý¾ÝÊǶàÉÙ£¿
£¨2£©ÈôÊäÈëµÄÊý¾ÝÊÇ9£¬Êä³öµÄÊý¾ÝÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸