精英家教网 > 初中数学 > 题目详情

已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为

[  ]

A.-6

B.-9

C.0

D.9

答案:A
解析:

  分析:先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1·y1=x2·y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=-x2,y1=-y2,再把此关系代入所求代数式进行计算即可.

  解答:解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点

  ∴x1·y1=x2·y2=3①,

  ∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,

  ∴x1=-x2,y1=-y2②,

  ∴原式=-x1y1-x2y2=-3-3=-6.

  故选A.

  点评:本题考查的是反比例函数的对称性,根据反比例函数的图象关于原点对称得出x1=-x2,y1=-y2是解答此题的关键.


提示:

考点:反比例函数图象的对称性.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线y=kx+b经过点(1,-1)和(2,-4).

(1)求直线的解析式;(2)求直线与x轴和y轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

 已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍。

1.(1)求此抛物线的解析式和直线的解析式;                 

2.(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;

3.(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大,若存在,求出点D坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍。
【小题1】(1)求此抛物线的解析式和直线的解析式;   
【小题2】(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;
【小题3】(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大,若存在,求出点D坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2012届北京市工大附中第一中学九年级上学期期中考试数学卷 题型:解答题

已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍。
【小题1】(1)求此抛物线的解析式和直线的解析式;   
【小题2】(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;
【小题3】(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大,若存在,求出点D坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市九年级上学期期中考试数学卷 题型:解答题

 已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍。

1.(1)求此抛物线的解析式和直线的解析式;                 

2.(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;

3.(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大,若存在,求出点D坐标;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案