解:∵四边形ABCD是正方形,
∴AD=DC,∠DAF=∠CDE=90°,
∴∠DEC+∠DCE=90°,
∵DE⊥CE,
∴∠DEC+∠ADF=90°,
∴∠ADF=∠DCE,
在△ADF和△DCE中,
∴△ADF≌△DCE(SAS);
故①正确;
∴DE=AF,
∵AE=DE,
∴AE=AF,
在△ANF和△ANE中
,
∴△ANF≌△ANE(SAS),
∴NF=NE,
∵NM⊥CE,
∴NE>MN,
∴NF>MN,
∴MN=FN错误,
故②错误;
∴AF=DE,
∵E为AD的中点,
∴AF=
AB=
CD,
∵AB∥CD,
∴△DCN∽△FNA,
∴CD:AF=CN:AN=2:1,
∴CN=2AN,
故③正确;
连接CF,
设S
△ANF=a,
则S
△ACF=3a,S
△ADN=2a,
∴S
△ACB=6a,
∴S
四边形CNFB=5a,
∴S
△ADN:S
四边形CNFB=2:5,
故④正确.
⑤延长DF与CB交于G,则∠ADF=∠G,
根据②的结论F为AB中点,即AF=BF,
在△DAF与△GBF中,
,
∴△DAF≌△GBF(AAS),
∴BG=AD,又AD=BC,
∴BC=BG,
又∵∠ADF=∠DCE,∠ADF+∠CDM=90°,
∴∠DCE+∠CDM=90°,
∴∠DMC=∠CMG=90°,
∴△CMG是直角三角形,
∴MB=BG=BC(直角三角形斜边上的中线等于斜边的一半),
∴∠G=∠BMF,
因此∠ADF=∠BMF,故选项正确.
所以正确的有①③④⑤共4个.
故选C.