精英家教网 > 初中数学 > 题目详情
已知a、b、c为实数,设A=a2-2b+
π
3
,B=b2-2c+
π
3
,C=c2-2a+
π
3

(1)判断A+B+C的符号并说明理由;
(2)证明:A、B、C中至少有一个值大于零.
分析:(1)计算出A+B+C,然后进行配方,根据任何数的完全平方式一定是非负数,即可作出判断;
(2)根据加法法则即可判断.
解答:解:(1)A+B+C=a2-2b+
π
3
+(b2-2c+
π
3
)+(c 2-2a+
π
3
),
=a 2+b 2+c 2-2a-2b-2c+π,
=a 2-2a+1+(b 2-2b+1)+(c 2-2c+1)-3+π,
=(a-1)2+(b-1)2+(c-1)2+π-3,
∵(a-1)2≥0,(b-1)2≥0,(c-1)2≥0,π-3>0,
∴=(a-1)2+(b-1)2+(c-1)2+π-3>0,
故A+B+C>0;

(2)∵A+B+C>0,
∴A、B、C中至少有一个值大于零.
点评:本题主要考查了整式的加减法以及完全平方式,正确进行配方是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a,b,c为实数,且满足下式:a2+b2+c2=1,①,a(
1
b
+
1
c
)+b(
1
c
+
1
a
)+c(
1
a
+
1
b
)=-3
;②求a+b+c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a、b、c为实数,且
ab
a+b
=
1
3
bc
b+c
=
1
4
ca
c+a
=
1
5
.求
abc
ab+bc+ca
的值

查看答案和解析>>

科目:初中数学 来源: 题型:

14、已知a,b,c为实数,下列命题中,假命题是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b,c为实数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.
(1)求4a+c的值;
(2)求2a-2b-c的值.

查看答案和解析>>

同步练习册答案