精英家教网 > 初中数学 > 题目详情
(2007•舟山)如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有下面4个结论:
①BD是∠ABC的角平分线;
②△BCD是等腰三角形;
③△ABC∽△BCD;
④△AMD≌△BCD.
(1)判断其中正确的结论是哪几个?
(2)从你认为是正确的结论中选一个加以证明.

【答案】分析:(1)利用等腰三角形和线段垂直平分线的性质分析.
(2)先①根据等腰三角形的性质证明∠ABC=∠ACB,再根据中垂线的性质证明.
解答:解:(1)连接BD,
①∵AB=AC,∠A=36°
∴△ABC是等腰三角形,∠ABC=∠ACB==72°,
∵AB垂直平分线交AC于D,交AB于M,
∴根据中垂线的性质,中垂线上的点到线段的两个端点的距离相等.
有AD=BD,∴∠A=∠ABD=36°,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°,
∴BD平分∠ABC,故正确;

②∴∠BDC=180°-∠C-∠DBC=180°-72°-36°=72°,
∴BD=BC,
∴△BCD是等腰三角形.故正确;

③∠ABC=∠ACB=∠BDC=∠C,
∴△ABC∽△BCD,故正确;

④∵∠AMD=90°≠∠C=72°,
∴△AMD与△BCD不是全等三角形.故不正确.
∴①、②、③命题都正确.正确的结论是①、②、③;

(2)证明:BD平分∠ABC,
∵AB=AC,∠A=36°
∴△ABC是等腰三角形,∠ABC=∠ACB==72°,
∵AB垂直平分线交AC于D,交AB于M,
∴根据中垂线的性质,中垂线上的点到线段的两个端点的距离相等.有AD=BD,
∴∠A=∠ABD=36°,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°,
∴BD平分∠ABC.
点评:本题利用了等腰三角形的性质和判定:等边对等角,等角对等边.线段的中垂线的性质,三角形内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源:2010年福建省泉州市初中毕业班数学总复习综合练习(五)(解析版) 题型:选择题

(2007•舟山)如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为( )

A.82米
B.163米
C.52米
D.30米

查看答案和解析>>

科目:初中数学 来源:2009年浙江省宁波市中考数学模拟试卷(一)(解析版) 题型:选择题

(2007•舟山)如图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是( )

A.这两个四边形面积和周长都不相同
B.这两个四边形面积和周长都相同
C.这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长
D.这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长

查看答案和解析>>

科目:初中数学 来源:2007年浙江省杭州市中考数学试卷(解析版) 题型:选择题

(2007•舟山)如图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是( )

A.这两个四边形面积和周长都不相同
B.这两个四边形面积和周长都相同
C.这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长
D.这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长

查看答案和解析>>

科目:初中数学 来源:2007年浙江省杭州市中考数学试卷(解析版) 题型:选择题

(2007•舟山)如图,用放大镜将图形放大,应该属于( )

A.相似变换
B.平移变换
C.对称变换
D.旋转变换

查看答案和解析>>

同步练习册答案