精英家教网 > 初中数学 > 题目详情

等边三角形ABC的边AB在直线l上,动点D也在直线l上(不与A,B点重合),△ADE为等边三角形.
(1)如图①,当点D在线段BA的延长线上且△ADE与△ABC在直线l的同侧时,试猜想线段BE与CD的大小关系为______
(2)如图②,当点D在线段BA上且ADE与ABC在直线l异测时,(1)中的结论是否仍然成立?若不成立,请说明结论发生了怎样的变化;若成立,说明理由,并求出此时线段BE与CD所在直线的夹角α(0°<α<90°)
(3)当点D在线段AB的延长线上且△ADE与△ABC仍然在直线l的异测时,试在图中画③出相应的图形,并直接判断此时BE与CD的关系(不必说明理由).

解:(1)BE=CD
∵△ABC和△ADE都是等边三角形,
∴AB=BC=AC,AD=DE=AE,∠ABC=∠BCA=∠BAC=∠DAE=∠ADE=∠AED=60°.
∴∠BAC+∠EAC=∠DAE+∠CAE,
即∠BAE=∠DAC,
在△BAE和△CAD中,

∴△BAE≌△CAD,
∴BE=CD.
故答案为:BE=CD.
(2)(1)中的结论仍然成立,BE=CD.
∵△ABC和△ADE都是等边三角形,
∴AB=BC=AC,AD=DE=AE,∠ABC=∠BCA=∠BAC=∠DAE=∠ADE=∠AED=60°.
在△BAE和△CAD中,

∴△BAE≌△CAD,
∴BE=CD.∠ACD=∠ABE.
延长CD到F交BE于点F,
∴∠BCD+∠DBE=60°,
∴∠BFC=60°.
∴线段BE与CD所在直线的夹角α为60°.
(3)如图③BE=CD,
∵△ABC和△ADE都是等边三角形,
∴AB=BC=AC,AD=DE=AE,∠ABC=∠BCA=∠BAC=∠DAE=∠ADE=∠AED=60°,
∴∠BAE=∠DAC=120°.
在△BAE和△CAD中,

∴∴△BAE≌△CAD,
∴BE=CD.
分析:(1)如图①根据等边三角形的性质证明△BAE≌△CAD,就可以得出BE=CD;
(2)如图②根据等边三角形的性质证明△BAE≌△CAD,就可以得出BE=CD;
(3)如图③根据等边三角形的性质证明△BAE≌△CAD,就可以得出BE=CD;
点评:本题考查了等边三角形的性质及全能等三角形的判定及性质的运用,在解答过程中合理利用等边三角形的边角的性质是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,精英家教网线段MN运动的时间为t秒.
(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形并求出该矩形的面积;
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t,求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点.线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.则大致反映S与t变化关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC的边长为2,AD是BC边上的高.
(1)在△ABC内部作一个矩形EFGH(如图①),其中E、H分别在边AB、AC上,FG在边BC上.
①设矩形的一边FG=x,那么EF=
 
;(用含有x的代数式表示)精英家教网
②设矩形的面积为y,当x取何值时,y的值最大,最大值是多少?
(2)当矩形EFGH面积最大时,请在图②中画出此时点E的位置.(要求尺规作图,保留作图痕迹,并简要说明确定点E的方法)

查看答案和解析>>

科目:初中数学 来源: 题型:

在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.试探索以下问题:

(1)当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE
=
=
 DB(填“>”“<”或“=”).
(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系会改变吗?请说明理由.
(3)在等边三角形ABC中,若点E在直线AB上,点D在直线BC上,且ED=EC,当△ABC的边长为1,AE=2时,CD的长为多少?

查看答案和解析>>

科目:初中数学 来源:2009年江苏省无锡市北塘区中考数学二模试卷(解析版) 题型:解答题

(2009•无锡二模)如图,已知等边三角形ABC的边长为2,AD是BC边上的高.
(1)在△ABC内部作一个矩形EFGH(如图①),其中E、H分别在边AB、AC上,FG在边BC上.
①设矩形的一边FG=x,那么EF=______

查看答案和解析>>

同步练习册答案