科目:初中数学 来源: 题型:
多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
四面体 | 4 | 4 |
6 |
长方体 | 8 | 6 | 12 |
正八面体 |
6 |
8 | 12 |
正十二面体 | 20 | 12 | 30 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
1.(1)根据上面多面体模型,完成表格中的空格:
多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
四面体 | 4 | 4 | 6 |
长方体 | 8 | 6 | 12 |
正八面体 | 6 | 8 | 12 |
正十二面体 |
|
|
|
2.(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
3.(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是
4.(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=
查看答案和解析>>
科目:初中数学 来源:2011-2012学年浙江省八年级上学期期末考试数学卷 题型:解答题
(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
1.(1)根据上面多面体模型,完成表格中的空格:
多面体 |
顶点数(V) |
面数(F) |
棱数(E) |
四面体 |
4 |
4 |
6 |
长方体 |
8 |
6 |
12 |
正八面体 |
6 |
8 |
12 |
正十二面体 |
|
|
|
2.(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
3.(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是
4.(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com