精英家教网 > 初中数学 > 题目详情
(8分)如图11,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.
(1)求证:AG=C′G;
(2)如图12,再折叠一次,使点D与点A重合,的折痕EN,EN角AD于M,求EM的长.
(1)证明:如图4,由对折和图形的对称性可知,

CD=C′D,∠C=∠C′=90° 
在矩形ABCD中,AB=CD,∠A=∠C=90°  
∴AB=C’D,∠A=∠C’
在△ABG和△C’DG中,
∵AB=C’D,∠A=∠C’,∠AGB=∠C’GD 
∴△ABG≌△C’DG(AAS)
∴AG=C’G
(2)解:如图5,设EM=x,AG=y,则有:

C’G=y,DG=8-y, DM=AD="4cm  "
在Rt△C’DG中,∠DC’G=90°,C’D=CD=6,  

即:
解得:
∴C’G=cm,DG=cm
又∵△DME∽△DC’G
, 即:
解得:, 即:EM=(cm)
∴所求的EM长为cm。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

(11·钦州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=
点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为【   】
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四边形中,对角线相等且互相垂直平分的是
A.平行四边形B.正方形C.等腰梯形D.矩形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是     2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题满分8分)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连结EG、CG,如图(1),易证 EG=CG且EG⊥CG.
(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和
位置关系?请直接写出你的猜想.
(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系
和位置关系?请写出你的猜想,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•北京)在?ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点ED分别是正三角形ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的一边延长线和另一边反向延长线上的点,且BE=CDDB的延长线交AE于点F,则图1中∠AFB的度数为      ;若将条件“正三角形、正四边形、正五边形”改为“正n边形”,其他条件不变,则∠AFB的度数为          .(用n的代数式表示,其中,≥3,且为整数)
        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,,下面的四个结论中:
①AB = CD; ②BE = CF;③;④,其中正确的有(   )
A.4个B.3个C.2个D.1个

查看答案和解析>>

同步练习册答案