精英家教网 > 初中数学 > 题目详情

【题目】已知一个正数x的平方根是3a-1a-7,求ax的值.

【答案】a的值为2x的值为25

【解析】

根据平方根的性质可得3a-1+a-70,解出a的值,进而可得3a-1的值,从而可得x的值.

解:由题意得:3a-1+a-70

解得:a2

3a-15

x5225

答:a的值为2x的值为25

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程组解应用题

为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有AB两种型号,其中每台的价格,年省油量如下表:

A

B

价格(万元/台)

a

b

节省的油量(万升/年)

2.4

2

经调查,购买一台A型车比购买一台B型车多20万元,购买2A型车比购买3B型车少60万元.

1)请求出ab

2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1 ,2).

(1)写出点AB的坐标:A )、B

(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A'B'C',则△A'B'C'的三个顶点坐标分别是A' , )、B' )、 C'

(3)计算△ABC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形.

(1)如图(1)所示,点GBC边上任意一点(不与BC两点重合),连接AG,作BFAG于点FDEAG于点E.求证△ABF≌△DAE

(2)(1)中,线段EFAFBF的等量关系是____(不需证明,直接写出结论即可)

(3)如图(2)所示,若点GCD边上任意一点(不与CD两点重合),作BFAG于点FDEAG于点E,那么图中的全等三角形是____,线段EFAFBF的等量关系是____(不需证明,直接写出结论即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式3x6的解集是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD⊥BCCE⊥AB,垂足分别为DEADCE交于点H,请你添加一个适当的条件:_____________,使△AEH≌△CEB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
请你根据统计图解答下列问题:
(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为 , 喜欢“戏曲”活动项目的人数是人;
(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:

(1)求这次调查的家长人数,并补全图1;

(2)求图2中表示家长“赞成”的圆心角的度数;

(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料后解决问题:

小明遇到下面一个问题:

计算(2+1)(22+1)(24+1)(28+1).

经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

请你根据小明解决问题的方法,试着解决以下的问题:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

同步练习册答案