精英家教网 > 初中数学 > 题目详情
一个小服装厂生产某种风衣,售价P(元/件)与月销售量x(件)之间的关系为P=160-2x,生产x件的成本R=500+30x元.
(1)该厂的月产量为多大时,获得的月利润为1300元?
(2)当月产量为多少时,可获得最大月利润?最大利润是多少元?
(1)设该厂的月获利为y,依题意得,
y=(160-2x)x-(500+30x)=-2x2+130x-500,
由y=1300知-2x2+130x-500=1300,
∴x2-65x+900=0,
∴(x-20)(x-45)=0,
解得x1=20,x2=45;
∴当月产量为20或45件时,月获利为1300元.

(2)由(1)知y=-2x2+130x-500=-2(x-
65
2
2+1612.5,
∵x为正整数,∴x=32或33时,y取得最大值为1612元,
∴当月产量为32件或33件时,可获得最大利润1612元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=-
m-4
8
x2+
2m-7
3
x+m2-6m+8
经过原点O,点B(-2,n)在这条抛物线上.
(1)求抛物线的解析式;
(2)将直线y=-2x沿y轴向下平移b个单位后得到直线l,若直线l经过B点,求n、b的值;
(3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=
3
3
x+b
经过点B(-
3
,2),且与x轴交于点A.将抛物线y=
1
3
x2
沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)直线AB交抛物线y=
1
3
x2
的右侧于点D,问点B是AD中点吗?试说明理由;
(3)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F.当线段EFx轴时,求平移后的抛物线C对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图.已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.
(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180m2
(2)能围成总面积为240m2的长方形花圃吗?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知等边三角形的边长为x(cm),则此三角形的面积S(cm2)关于x的函数关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

安庆迎江区农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长24米的墙,设计了如图一个矩形的养圈.
(1)请你求出张大伯设计的矩形养圈的面积.
(2)请你判断他的设计方案是否使矩形养圈的面积最大?如果不是最大,应怎样设计?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某旅游胜地欲开发一座景观山.从山的侧面进行勘测,迎面山坡线ABC由同一平面内的两段抛物线组成,其中AB所在的抛物线以A为顶点、开口向下,BC所在的抛物线以C为顶点、开口向上.以过山脚(点C)的水平线为x轴、过山顶(点A)的铅垂线为y轴建立平面直角坐标系如图(单位:百米).已知AB所在抛物线的解析式为y=-
1
4
x2+8,BC所在抛物线的解析式为y=
1
4
(x-8)2,且已知B(m,4).
(1)设P(x,y)是山坡线AB上任意一点,用y表示x,并求点B的坐标;
(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).
①分别求出前三级台阶的长度(精确到厘米);
②这种台阶不能一直铺到山脚,为什么?
(3)在山坡上的700米高度(点D)处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E处,OE=1600(米).假设索道DE可近似地看成一段以E为顶点、开口向上的抛物线,解析式为y=
1
28
(x-16)2试求索道的最大悬空高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ACB=90°AC=BC=6cm,正方形DEFG的边长为2cm,其一边EF在BC所在的直线L上,开始时点F与点C重合,让正方形DEFG沿直线L向右以每秒1cm的速度作匀速运动,最后点E与点B重合.
(1)请直接写出该正方形运动6秒时与△ABC重叠部分面积的大小;
(2)设运动时间为x(秒),运动过程中正方形DEFG与△ABC重叠部分的面积为y(cm2).
①在该正方形运动6秒后至运动停止前这段时间内,求y与x之间的函数关系式;
②在该正方形整个运动过程中,求当x为何值时,y=
1
2

查看答案和解析>>

同步练习册答案