【题目】已知,△ABC和△ADE均为等腰三角形,AB=AC=5,AD=AE=2,且∠BAC=∠DAE=120°,把△ADE绕点A在平面内自由旋转.如图,连接BD,CD,CE,点M,P,N分别为DE,DC,BC的中点,连接MP,PN,MN,则△PMN的面积最大值为_____.
【答案】.
【解析】
如图,先证明△ABD≌△ACE得到∠1=∠2,BD=CE,再根据三角形中位线的性质得到MP= CE,MP∥CE,PN∥BD,PN= BD,则PM=PN,接着证明∠MPD=∠1+∠3,∠DPN=∠6+∠4,则∠MPN=∠ABC+∠ACB=60°,则可判断△PMN为等边三角形,所以S△PMN= ,利用三角形三边的关系得BD≤AB+AD(当且仅当B、A、D共线时取等号),然后利用BD的最大值为5得到S△PMN的最大值.
解:如图,
∵∠BAC=∠DAE=120°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠1=∠2,BD=CE,
∵点M,P,N分别为DE,DC,BC的中点,
∴PM为△DEC的中位线,PN为△CBD的中位线,
∴MP=CE,MP∥CE,PN∥BD,PN=BD,
∴PM=PN,
∵PM∥CE,
∴∠MPD=∠2+∠3=∠1+∠3,
∵PN∥BD,
∴∠5=∠6,
∵∠DPN=∠4+∠5=∠6+∠4,
∴∠MPN=∠MPD+∠DPN=∠1+∠3+∠6+∠4=∠ABC+∠ACB=180°﹣120°=60°,
∴△PMN为等边三角形,
∴S△PMN==×(BD)2=BD2,
当BD最大时,S△PMN的值最大,
而BD≤AB+AD(当且仅当B、A、D共线时取等号),
∴BD的最大值为5+2=7,
∴S△PMN的最大值为.
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴的负半轴、y轴的正半轴上,点D在边BC上,将该矩形沿AD折叠,点B恰好落在边OC上的E处,且△CDE为等腰直角三角形,若OA=4,则点D的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为( )
A.2B.4C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.
(1)求证:FG是⊙O的切线;
(2)若⊙O的半径为6.
①当OD=4,求AD的长度;
②当△OCD是直角三角形时,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC,BD为四边形ABCD的对角线,AC⊥BC,AB⊥AD,CA=CD.若tan∠BAC=.则tan∠DBC的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小甬工作的办公楼(矩形ABCD)前有一旗杆MN,MN⊥DN,旗杆高为12m,在办公楼底A处测得旗杆顶的仰角为30°,在办公楼天台B处测旗杆顶的仰角为45°,在小甬所在办公室楼层E处测得旗杆顶的俯角为15°.
(1)办公楼的高度AB;
(2)求小甬所在办公室楼层的高度AE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读):数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.
(理解):(1)如图,两个边长分别为、、的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;
(2)如图2,行列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:________;
(运用):(3)边形有个顶点,在它的内部再画个点,以()个点为顶点,把边形剪成若干个三角形,设最多可以剪得个这样的三角形.当,时,如图,最多可以剪得个这样的三角形,所以.
①当,时,如图, ;当, 时,;
②对于一般的情形,在边形内画个点,通过归纳猜想,可得 (用含、的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.
(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;
(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com