【题目】某商店准备进一批季节性小家电,单价40元。经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.
(1)设销售定价为x元,销售量为y个,用含x的代数式表示y;
(2)若商店准备获利2000元,则销售定价为多少元?商店应进货多少个?
(3)若商店要获得最大利润,则销售定价为多少元?商店应进货多少个?
【答案】(1)、y=700-10x;(2)、销售定价为50元,进货200个或销售定价为60元,进货100个商店都能获利2000元;(3)、销售价应定为55元,应进货150个.
【解析】
试题分析:(1)、根据题意得出y与x的关系式;(2)、根据获利=单件利润×数量列出方程,从而求出x的值,然后得出进货的数量;(3)、设获利为p,然后得出p与x的函数关系式,然后通过配方法进行配方,从而得出最大值.
试题解析:(1)、依题意得:y=180-10(x-52) =700-10x ∴用含x的代数式表示y为y=700-10x
(2)、依题意得:(x-40) y=2000 ∴(x-40)(700-10x)=2000
即 解得:
经检验:都是方程的根,且都符合题意
当x=50时,y=200 当x=60时,y=100
∴销售定价为50元,进货200个或销售定价为60元,进货100个商店都能获利2000元。
(3)、设销售定价为元时,商店可获利p元,则p=(x-40) y
∴p=(x-40)(700-10x)=-10=-10(x-55)+2250
∴当x=55时,p有最大值2250,此时y=150
答:商店要获得最大利润,销售价应定为55元,应进货150个。
科目:初中数学 来源: 题型:
【题目】在郴州市的日常工作中,洒水车每天都在国庆路上来回洒水.我们约定洒水车在行驶过程中,向北的行程记为正数,向南的行程记为负数.2017年8月20日这一天,某台洒水车市政工程处出发,所走的路程(单位:千米)为:+5,+7.5,-8,-3,+9.5,+2.5,-11,-3.5.问:
(1)这天收工时,这台洒水车离市政工程处多远?它在市政工程处的南边还是北边?
(2)若洒水车每走1千米耗油0.2升,请问这一天这台洒水车在洒水过程中耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°。
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧的长。(本题12分)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】动手操作:
(1)如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD= 度;
(2)如图2,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;
(3)灵活应用:请你直接利用以上结论,解决以下列问题:如图3,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A,B两种型号的车厢将这批货物运至北京,已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,共有哪几种方案?请你设计出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.
(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com