精英家教网 > 初中数学 > 题目详情

【题目】如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.

(1)求证:PC是⊙O的切线;
(2)若PD=,AC=8,求图中阴影部分的面积;
(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.

【答案】
(1)

证明:如图1,连接OC,

∵PA切⊙O于点A,∴∠PAO=90°,

∵BC∥OP,

∴∠AOP=∠OBC,∠COP=∠OCB,

∵OC=OB,∴∠OBC=∠OCB,

∴∠AOP=∠COP,

在△PAO和△PCO中,

∴△PAO≌△PCO,

∴∠PCO=∠PAO=90°,

∴PC是⊙O的切线;


(2)

解:由(1)得PA,PC都为圆的切线,

∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,

∴∠PAD+∠DAO=∠DAO+∠AOD,

∴∠PAD=∠AOD,

∴△ADP∽△ODA,

∴AD2=PDDO,

∵AC=8,PD=

∴AD=AC=4,OD=3,AO=5,

由题意知OD为△的中位线,

∴BC=6,OD=6,AB=10.

∴S阴=SO﹣SABC=﹣24;


(3)

解:如图2,

连接AE、BE,作BM⊥CE于M,

∴∠CMB=∠EMB=∠AEB=90°,

∵点E是的中点,

∴∠ECB=∠CBM=∠ABE=45°,

CM=MB=3

BE=ABcos45°=5

∴EM==4

则CE=CM+EM=7


【解析】(1)连接OC,证明△PAO≌△PCO,得到∠PCO=∠PAO=90°,证明结论;
(2)证明△ADP∽△PDA,得到成比例线段求出BC的长,根据S=SO﹣SABC求出答案;
(3)连接AE、BE,作BM⊥CE于M,分别求出CM和EM的长,求和得到答案.
此题考查了圆的综合应用,涉及知识点有全等三角形的判定及性质,相似三角形的性质,割补法求阴影部分面积,勾股定理的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,直线l交x轴于点C,交y轴于点D,与反比例函数y= (k>0)的图象交于两点A、E,AG⊥x轴,垂足为点G,SADG=3

(1)k=
(2)求证:AD=CE;
(3)如图2,若点E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,CD=1,∠DBC=30°.若将BD绕点B旋转后,点D落在DC延长线上的点E处,点D经过的路径 ,则图中阴影部分的面积是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、An1为OA的n等分点,B1、B2、B3、…Bn1为CB的n等分点,连接A1B1、A2B2、A3B3、…、An1Bn1 , 分别交(x≥0)于点C1、C2、C3、…、Cn1 , 当B25C25=8C25A25时,则n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组的解集在数轴上表示正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO并延长至E,使得OE=OB,连接AE.

(1)求证:AE是⊙O的切线;
(2)若BD=AD=4,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有(  )

A.①③④
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图:

根据以上信息,解答下列问题:
(1)求本次抽取了多少份作品,并补全两幅统计图;
(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?

查看答案和解析>>

同步练习册答案