如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
详见试题解析.
【解析】
试题分析:
(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;
(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.
试题解析:
(1)∵BD平分∠ABC,点P在BD上,PM⊥AD,PN⊥CD
∴PM=PN
∵PD=PD Rt△PMD≌Rt△PND
∴∠ADB=∠CDB (5分)
(2)∵PM⊥AD,PN⊥CD
∴∠PMD=∠PND=90°
∵∠ADC=90°,
∴四边形MPND是矩形
∵PM=PN
∴四边形MPND是正方形 (10分)
考点:1.正方形的判定;2.全等三角形的判定与性质.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com