精英家教网 > 初中数学 > 题目详情
精英家教网如图,在等腰Rt△ABC中,AC=BC,以斜边AB为一边作等边△ABD,使点C,D在AB的同侧;再以CD为一边作等边△CDE,使点C,E落在AD的异侧.若AE=1,则CD的长为(  )
A、
3
-1
B、
3
-1
2
C、
6
-
2
D、
6
-
2
2
分析:在延长DC后,欲求DC,即DF-CF.而DF是直角三角形ADF的高,CF是等腰直角三角形ABC斜边上的高,根据题中条件,求出二者即可.
解答:精英家教网解:延长DC交AB于F
由题意易得,
∵AC=BC,
∴C在AB的垂直平分线上,
同理,D在AB的垂直平分线上,
∴CD是等边三角形ABD的角平分线,
所以∠ADC=30°,
则∠EDA=60°-30°=30°,
∵ED=DC,AD=AD,∠EDA=∠CDA=30°
∴△EDA≌△CDA
∴EA=AC=1
∴在等腰Rt△ABC中AB=
2

∴BF=CF=
2
2

在△ABD中tan∠BDF=tan30°=
BF
DF

∴DF=
6
2

∴DC=DF-CF=
6
-
2
2

故选D.
点评:此题主要考查了等腰三角形、等边三角形和直角三角形的性质,综合利用了勾股定理和全等三角形的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是(  )
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边精英家教网上运动,且保持AD=CE.连接DE、DF、EF.
①求证:△DFE是等腰直角三角形;
②在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.
③求△CDE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,则
ADDC
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正确结论的序号是(  )
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.
(1)在此运动变化的过程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面积.

查看答案和解析>>

同步练习册答案