精英家教网 > 初中数学 > 题目详情
14.在二次函数y=ax2+bx+c中,若a>0,b2-4ac=0,则它的图象可能是(  )
A.B.C.D.

分析 根据二次函数图象的特点,由a>0,可知抛物线的开口方向,由b2-4ac=0,可知该函数图象与x轴的交点个数.

解答 解:在二次函数y=ax2+bx+c中,若a>0,则该抛物线的开口向上,b2-4ac=0,说明该抛物线的图象与x轴只有一个交点,
故选A.

点评 本题考查二次函数的图象,解题的关键是明确二次函数图象的特点,明确a的正负决定抛物线的开口方向,b2-4ac=0决定抛物线与x轴的交点个数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系xOy中,双曲线y=$\frac{4}{x}$(x>0)与直线y=kx-k的交点为A(m,2).
(1)求k的值;
(2)当x>0时,直接写出不等式kx-k>$\frac{4}{x}$的解集:x>2;
(3)设直线y=kx-k与y轴交于点B,若C是x轴上一点,且满足△ABC的面积是4,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
(1)求证:四边形ABCD是平行四边形;
(2)若点E是AC的中点,判断BE与AC的位置关系,并说明理由;
(3)若△ABE是等边三角形,AD=$\sqrt{14}$,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.甲、乙两地之间有一条笔直的公路l,小明从甲地出发沿公路l步行前往乙地,同时小亮从乙出发沿公路l骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟,y1、y2与x之间的函数关系如图1所示,s与x之间的函数如图2所示.
(1)小明与小亮第二次相遇是在出发后32分钟,相遇地距乙地400米;
(2)在图2中,补全整个过程中s(米)与x(分钟)之间的函数如图,并确定a的值.
(3)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知一个正比例函数与一个一次函数的图象交于点A(3,4),且0A=0B
(1)求△AOB的面积;
(2)求△AOB三边上的高;
(2)求两个函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在下列条件下,求出一次函数的表达式,并圆出图象:图象和y轴的交点的纵坐标为-3,和x轴的交点的横坐标为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)画出函数y=-$\frac{6}{x}$(x<0)的图象:
列表:
x-6-5-4-3-2-1
y      
描点并连线.
(2)从图象可以看出,曲线从左向右依次升高,当x由小变大时,y=-$\frac{6}{x}$(x<0)随之变大.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若直线y=kx+b(k<0,b>0)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,二次函数y=ax2+bx+c与直线y=$\frac{1}{2}x+1$相交于A、B两点,A点在y轴上,当x=6时,二次函数有最大值,最大值为10,点C是二次函数图象上一点(点C在AB上方),过C作CD⊥x轴,垂足为点D,交AB于点E,过点B作BF⊥x轴,垂足为点F.
(1)求二次函数的表达式;
(2)当点C在何位置时,线段CE有最大值?请求出点C的坐标及CE的最大值;
(3)当点C在何位置时,线段BE与线段CF互相平分?请求出点C的坐标.

查看答案和解析>>

同步练习册答案