【题目】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物元以上可以获得一次转动转 盘的机会,当转盘停止时指针落在哪一个区域就获得相应的奖品 (指针指向两个扇形的交线时,当作指向右边的扇形),下表是活动进行中的一组统计数据:
转动转盘的次数 | ||||||
落在“铅笔"的次数 | ||||||
落在“铅笔"的频率, (结果保留小数点后两位) |
(1)转动该转盘一次,获得铅笔的概率约为____ ;( 结果保留小数点后一位数字);
(2)铅笔每只元,饮料每瓶元,经统计该商场每天约有名顾各参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在元左右,则转盘上“一瓶饮料”区域的圆心角应调整为 度.
【答案】(1)0.7;(2)该商场每天大致需要支出元奖品费用:(3)36
【解析】
(1)利用频率估计概率即可求解;
(2)根据扇形统计图,结合获得铅笔的概率为0.7,求出获得一瓶饮料的概率为0.3,列出算式40000×0.7×0.5+40000×0.3×3,计算即可求解;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n°,则,解方程即可.
解:(1)转动该转盘一次,获得铅笔的概率约为0.7;
(2)1-0.7=0.3,40000×0.7×0.5+40000×0.3×3=14000+36000=50000元;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n°,
则,
解方程得:n=36.
科目:初中数学 来源: 题型:
【题目】解不等式组请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的阶级在数轴上表示出来;
(Ⅳ)原不等式组的解集为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于,两点(点位于点左侧),与轴交于点,连接.点为抛物线的顶点,点为.
(1)点是第四象限内抛物线上的一点,过点作轴交抛物线于点,作轴于点,作轴于点,点在点右边.点是直线上一个动点,点是直线上一个动点,当四边形的周长最大时,求的最小值;
(2)如图2,将原抛物线绕其对称轴与轴的交点旋转得新的抛物线,点,的对应点分别记为,,把抛物线沿直线平移,,的对应点分别记为,是否存在点,使得是以为腰的等腰三角形?若存在,请直接写出的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,=n,M为BC上的一点,连接BM.
(1)如图1,若n=1,
①当M为AC的中点,当BM⊥CD于H,连接AH,求∠AHD的度数;
②如图2,当H为CD的中点,∠AHD=45°,求的值和∠CAH的度数;
(2)如图3,CH⊥AM于H,连接CH并延长交AC于Q,M为AC中点,直接写出tan∠BHQ的值(用含n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.
(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.
(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中
(1)请写出△ABC各点的坐标;
(2)求出△ABC的面积;
(3)如图,将三角形ABC向右平移3个单位长度,再向下平移2个单位长度,得到对应的三角形A1B1C1,并写出点A1、B1、C1的坐标
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com