精英家教网 > 初中数学 > 题目详情

【题目】现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.

1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?

2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?

3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?

【答案】1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.

【解析】

1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算
2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;

3)设进价为y元,根据售价-进价=利润,则可得出方程即可.

解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.

根据题意,得300+0.8xx

解得x1500

所以当顾客消费等于1500元时,买卡与不买卡花钱相等;

当顾客消费少于1500元时,300+0.8xx不买卡合算;

当顾客消费大于1500元时,300+0.8xx买卡合算;

2)小张买卡合算,

3500﹣(300+3500×0.8)=400

所以,小张能节省400元钱;

3)设进价为y元,根据题意,得

300+3500×0.8)﹣y25%y

解得 y2480

答:这台冰箱的进价是2480元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从﹣3,﹣1, ,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组 无解,且使关于x的分式方程 =﹣1有整数解,那么这5个数中所有满足条件的a的值之和是(
A.﹣2
B.﹣3
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图象的一支位于第一象限.

(1)判断该函数图象的另一支所在的象限,并求m的取值范围;

(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于轴对称,若△OAB的面积为6,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的个数有(  )

①已知直角三角形的面积为2,两直角边的比为12,则斜边长为

②直角三角形的最大边长为,最短边长为1,则另一边长为

③在△ABC中,若∠A:∠B:∠C=1:56,则△ABC为直角三角形;

④等腰三角形面积为12,底边上的高为4,则腰长为5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范围.
小捷的思路是:原不等式等价于x2﹣2x﹣1>a,设函数y1=x2﹣2x﹣1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.

请结合小捷的思路回答:
对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,则a的取值范围是.
参考小捷思考问题的方法,解决问题:
关于x的方程x﹣4= 在0<a<4范围内有两个解,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y=ax2+bx+3 经过点A(3,0),G(﹣1,0)两点.

(1)求这个二次函数的解析式;
(2)若点M时抛物线在第一象限图象上的一点,求△ABM面积的最大值;
(3)抛物线的对称轴交x轴于点P,过点E(0, )作x轴的平行线,交AB于点F,是否存在着点Q,使得△FEQ∽△BEP?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC中,AD是BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边BEF,连接CF.

(1)求证:AE=CF;

(2)求ACF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)

查看答案和解析>>

同步练习册答案