精英家教网 > 初中数学 > 题目详情
(2012•珠海)如图,在等腰梯形ABCD中,AB∥DC,AB=3
2
,DC=
2
,高CE=2
2
,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为S1、被直线RQ扫过的图形面积为S2,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.
(1)填空:∠AHB=
90°
90°
;AC=
4
4

(2)若S2=3S1,求x;
(3)设S2=mS1,求m的变化范围.
分析:(1)首先过点C作CK∥BD交AB的延长线于K,易证得四边形DBKC是平行四边形,可求得AK=4
2
,由四边形ABCD是等腰梯形,可得AC=CK,又由CE=2
2
且是高,即可证得∠K=∠KCE=∠ACE=∠CAE=45°,继而求得∠AHB的度数,又由等腰直角三角形的性质,求得AC的长;
(2)直线移动有两种情况:0<x<
3
2
3
2
≤x≤2;然后分别从这两种情况分析求解,注意当0<x<
3
2
时,易得S2=4S1≠3S1;当
3
2
≤x≤2时,根据相似三角形的性质与直角三角形的面积的求解方法,可求得△BCD与△CRQ的面积,继而可求得S2与S1的值,由S2=3S1,即可求得x的值;
(3)由(2)可得当0<x<
3
2
时,m=4;当
3
2
≤x≤2时,可得m═-36(
1
x
-
2
3
2+4,然后利用二次函数的性质求得m的变化范围.
解答:解:(1)过点C作CK∥BD交AB的延长线于K,
∵CD∥AB,
∴四边形DBKC是平行四边形,
∴BK=CD=
2
,CK=BD,
∴AK=AB+BK=3
2
+
2
=4
2

∵四边形ABCD是等腰梯形,
∴BD=AC,
∴AC=CK,
∴AE=EK=
1
2
AK=2
2
=CE,
∵CE是高,
∴∠K=∠KCE=∠ACE=∠CAE=45°,
∴∠ACK=90°,
∴∠AHB=∠ACK=90°,
∴AC=AK•cos45°=4
2
×
2
2
=4;
故答案为:90°,4;

(2)直线移动有两种情况:0<x<
3
2
3
2
≤x≤2.
①当0<x<
3
2
时,
∵MN∥RQ,
∴△AMN∽△ARQ,△ANF∽△AQG,
S2
S1
=(
AG
AF
)
2
=4,
∴S2=4S1≠3S1
②当
3
2
≤x≤2时,
∵AB∥CD,
∴△ABH∽△CDH,
∴CH:AH=CD:AB=DH:BH=1:3,
∴CH=DH=
1
4
AC=1,AH═BH=4-1=3,
∵CG=4-2x,AC⊥BD,
∴S△BCD=
1
2
×4×1=2,
∵RQ∥BD,
∴△CRQ∽△CDB,
∴S△CRQ=2×(
4-2x
1
2=8(2-x)2
∵S梯形ABCD=
1
2
(AB+CD)•CE=
1
2
×(3
2
+
2
)×2
2
=8,S△ABD=
1
2
AB•CE=
1
2
×3
2
×2
2
=6,
∵MN∥BD,
∴△AMN∽△ADB,
S1
S△ABD
=(
AF
AH
)
2
=
x2
9

∴S1=
2
3
x2,S2=8-8(2-x)2
∵S2=3S1
∴8-8(2-x)2=3×
2
3
x2
解得:x1=
6
5
3
2
(舍去),x2=2,
∴x的值为2;

(3)由(2)得:
当0<x<
3
2
时,m=4,
3
2
≤x≤2时,m=3,
∵S2=mS1
∴m=
S2
S1
=
8-8(2-x)2
2
3
x2
=-
36
x2
+
48
x
-12=-36(
1
x
-
2
3
2+4,
∴m是
1
x
的二次函数,当
3
2
≤x≤2时,即当
1
2
1
x
2
3
时,m随
1
x
的增大而增大,
∴当x=
3
2
时,m最大,最大值为4,
当x=2时,m最小,最小值为3,
∴m的变化范围为:3≤m≤4.
点评:此题考查了相似三角形的判定与性质、等腰梯形的性质、平行四边形的判定与性质、等腰直角三角形的性质以及二次函数的最值问题.此题综合性很强,难度较大,注意数形结合、分类讨论思想与函数思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•珠海)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.
(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)
(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•珠海)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:
3
≈1.73,
2
≈1.41

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•珠海)如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.

查看答案和解析>>

同步练习册答案