精英家教网 > 初中数学 > 题目详情
如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C精英家教网的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.
分析:(1)连接CA,构造直角三角形,运用勾股定理,求出各线段的长,进而求出B,P,C的坐标;
(2)根据一次函数图象上点的坐标特征,求出对应线段的长,证明△DAC≌△POB,然后得到∠DCA=∠ABC,再根据直角三角形的性质求出∠DCA+∠ACB=90°,利用切线判定定理即可解答;
(3)把点B代入y=-x2+(a+1)x+6即可求出a的值,进而求出函数解析式;求出两函数图象交点,由图可得结论.
解答:精英家教网(1)解:如图,连接CA.
∵OP⊥AB,
∴OB=OA=2.(1分)
∵OP2+BO2=BP2
∴OP2=5-4=1,OP=1.(2分)
∵BC是⊙P的直径,
∴∠CAB=90°.(也可用勾股定理求得下面的结论)
∵CP=BP,OB=OA,
∴AC=2OP=2.(3分)
∴B(2,0),P(0,1),C(-2,2).(写错一个不扣分)(4分)

(2)证明:∵y=2x+b过C点,
∴b=6∴y=2x+6.(5分)
∵当y=0时,x=-3,
∴D(-3,0).
∴AD=1.(6分)
∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°,
∴△DAC≌△POB.
∴∠DCA=∠ABC.
∵∠ACB+∠CBA=90°,
∴∠DCA+∠ACB=90°.(也可用勾股定理逆定理证明)(7分)
∴DC是⊙P的切线.(8分)

(3)解:∵y=-x2+(a+1)x+6过B(2,0)点,
∴0=-22+(a+1)×2+6.
∴a=-2.(9分)
∴y=-x2-x+6.(10分)
因为函数y=-x2-x+6与y=2x+6的图象交点是(0,6)和点D(-3,0)(画图可得此结论)(11分)
所以满足条件的x的取值范围是x<-3或x>0.(12分)
点评:本题是一道较为常规的综合压轴题,综合性较强,解第3小题时可以借助函数图象来很明了快捷地得出结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,点M在x轴上,以点M为圆心,2.5长为半径的圆交y轴于A、B两点,交x轴于C(精英家教网x1,0)、D(x2,0)两点,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的两根.
(1)求点C、D及点M的坐标;
(2)若直线y=kx+b切⊙M于点A,交x轴于P,求PA的长;
(3)⊙M上是否存在这样的点Q,使点Q、A、C三点构成的三角形与△AOC相似?若存在,请求出点的坐标,并求出过A、C、Q三点的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.若函数y=
k
x
(x<0)的图象过C点,则k的值是(  )
A、±4
B、-4
C、-2
5
D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,精英家教网-1)
(1)求经过B、E、C三点的二次函数的解析式;
(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;
(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点I在x轴上,以I为圆心、r为半径的半圆I与x轴相交于点A、B,与y轴相精英家教网交于点D,顺次连接I、D、B三点可以组成等边三角形.过A、B两点的抛物线y=ax2+bx+c的顶点P也在半圆I上.
(1)证明:无论半径r取何值时,点P都在某一个正比例函数的图象上.
(2)已知两点M(0,-1)、N(1、0),且射线MN与抛物线y=ax2+bx+c有两个不同的交点,请确定r的取值范围.
(3)请简要描述符合本题所有条件的抛物线的特征.

查看答案和解析>>

同步练习册答案