精英家教网 > 初中数学 > 题目详情
如图,二次函数y=ax2+2ax+b的图象与x轴交于点A、B,与y轴交于点C(0,),其顶点在直线y=-2x上.
(1)求a,b的值;
(2)写出当-2≤x≤2时,二次函数y的取值范围;
(3)以AC、CB为一组邻边作□ACBD,则点D关于x轴的对称点D’是否在该二次函数的图象上?请说明理由.
(1)a=-,b=;(2)-≤y≤2;(3)点D’在该二次函数的图象上.

试题分析:(1)把C点坐标代入抛物线解析式,救出b的值;抛物线的对称轴是直线x=-1,顶点坐标是(-1,2),可求得a=-
(2)根据-2≤x≤2,判断出二次函数y的取值范围;
(3)先求出点D的坐标,再确定它关于x轴对称的D’的坐标,再判定出它是否在该二次函数的图象上.
试题解析:(1)抛物线的对称轴是直线x=-1,顶点坐标是(-1,2)
可求得a=-,b=
(2)当-2≤x≤2时,-≤y≤2
(3)点D坐标是(―2,―
点D’坐标是(―2,
经检验,点D’在该二次函数的图象上
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

请写出一个开口向下,对称轴是直线的抛物线的解析式         .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.

(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.

(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点A坐标为(-1,0).则下面的四个结论:
①2a+b=0;②4a+2b+c>0;③B点坐标为(4,0);④当x<-1时,y>0.
其中正确的是(  )
A.①②      B.③④      C.①④      D.②③

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系xOy中,抛物线y=2x2+mx+8的顶点A在x 轴上,则m的值是(  )
A.±4 B.8C.-8D.±8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某经销商代理销售一种手机,按协议,每卖出一部手机需另交品牌代理费100元,已知该种手机每部进价800元,销售单价为1200元时,每月能卖出100部,市场调查发现,若每部手机每让利50元,则每月可多售出40部.
(1)若每月要获取36000元利润,求让利价
(利润=销售收入-进货成本-品牌代理费)
(2)设让利x元,月利润为y元,写出y与x的函数关系式,并求让利多少元时,月利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的顶点坐标是             .

查看答案和解析>>

同步练习册答案