精英家教网 > 初中数学 > 题目详情

【题目】如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C、D不重合).

(1)如图①,当α=90°时,求证:DE+DF=AD.
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为 ,请给出证明.
(3)在(2)的条件下,将∠QPN绕点P旋转,若旋转过程中∠QPN的边PQ与边AD的延长线交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.

【答案】
(1)

证明:正方形ABCD的对角线AC,BD交于点P,

∴PA=PD,∠PAE=∠PDF=45°,

∵∠APE+∠EPD=∠DPF+∠EPD=90°,

∴∠APE=∠DPF,

在△APE和△DPF中

∴△APE≌△DPF(ASA),

∴AE=DF,

∴DE+DF=AD


(2)

如图②,取AD的中点M,连接PM,

∵四边形ABCD为∠ADC=120°的菱形,

∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,

∴△MDP是等边三角形,

∴PM=PD,∠PME=∠PDF=60°,

∵∠PAM=30°,

∴∠MPD=60°,

∵∠QPN=60°,

∴∠MPE=∠FPD,

在△MPE和△DPF中,

∴△MPE≌△DPF(ASA)

∴ME=DF,

∴DE+DF= AD


(3)

如图,

如图③,当点E落在AD的延长线上时,

取AD的中点M,连接PM,

∵四边形ABCD为菱形,∠ADC=120°,

∴AD=CD,∠DAP=30°,AC⊥BD,

∴∠ADP=∠CDP=60°,

∵AM=MD,

∴PM=MD,

∴△MDP是等边三角形,

∴∠PME=∠MPD=60°,PM=PD,

∵∠QPN=60°,

∴∠MPE=∠FPD,

在△MPE和△DPF中,

∴△MPE≌△DPF(ASA).

∴ME=DF,

∴DF﹣DE=ME﹣DE=DM= AD


【解析】(1)利用正方形的性质得出角与线段的关系,易证得△APE≌△DPF,可得出AE=DF,即可得出结论DE+DF=AD,(2)取AD的中点M,连接PM,利用菱形的性质,可得出△MDP是等边三角形,易证△MPE≌△FPD,得出ME=DF,由DE+ME= AD,即可得出DE+DF= AD,(3)①当点E落在AD上时,DE+DF= AD,②当点E落在AD的延长线上时,DF﹣DE= AD.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两条对角线相等且互相垂直平分的四边形是( )

A. 平行四边形 B. 矩形 C. 菱形 D. 正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法不正确的是(
A.0既不是正数,也不是负数
B.1是绝对值最小的数
C.一个有理数不是整数就是分数
D.0的绝对值是0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是一个平行四边形,BE⊥CD于点E,BF⊥AD于点F,
(1)请用图中表示的字母表示出平行线AD与BC之间的距离;
(2)若BE=2cm,BF=4cm,求平行线AB与CD之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小组7位同学的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( )

A. 30,27 B. 30,29 C. 29,30 D. 30,28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若等腰三角形一个内角为100度,则它的底角为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题:如图,正方形ABCD中,E、F分别为AB、AD上的点,AF=BE,CE、BF交于H,BF交AC于M,O为AC的中点,OB交CE于N,连OH.下列结论中:①BF⊥CE;②OM=ON;③ ;④ .其中正确的命题有(
A.只有①②
B.只有①②④
C.只有①④
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD为正方形,AB= ,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
①求证:矩形DEFG是正方形;
②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案