精英家教网 > 初中数学 > 题目详情
(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF与△CFB.其中相似的为( )

A.①④
B.①②
C.②③④
D.①②③
【答案】分析:根据判定三角形相似的条件对选项逐一进行判断
解答:解:根据题意得:∠BAE=∠ADC=∠AFE=90°
∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°
∴∠AEF=∠ACD
∴①中两三角形相似;

容易判断△AFE∽△BAE,得=
又∵AE=ED,
=
而∠BED=∠BED,
∴△FED∽△DEB.
故②正确;

∵AB∥CD,
∴∠BAC=∠GCD,
∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,
∴∠ABG=∠DAF+∠EDF=∠DFC;
∵∠ABG=∠DFC,∠BAG=∠DCF,
∴△CFD∽△ABG,故③正确;
所以相似的有①②③.
故选D.
点评:此题考查了相似三角形的判定:
①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF与△CFB.其中相似的为(  )

查看答案和解析>>

科目:初中数学 来源:第19章《相似形》中考题集(05):19.5 相似三角形的判定(解析版) 题型:选择题

(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF与△CFB.其中相似的为( )

A.①④
B.①②
C.②③④
D.①②③

查看答案和解析>>

科目:初中数学 来源:第29章《相似形》中考题集(05):29.4 三角形相似的条件(解析版) 题型:选择题

(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF与△CFB.其中相似的为( )

A.①④
B.①②
C.②③④
D.①②③

查看答案和解析>>

科目:初中数学 来源:2012年安徽省滁州市凤阳县城西中学中考数学模拟试卷(解析版) 题型:选择题

(北师大版)如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF与△CFB.其中相似的为( )

A.①④
B.①②
C.②③④
D.①②③

查看答案和解析>>

同步练习册答案