精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则线段AB扫过的图形面积是平方单位(结果保留π).

【答案】
【解析】解:在Rt△ABC中,由勾股定理,得AB= = =
由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,
∴线段AB扫过的图形面积= = =
所以答案是:
【考点精析】本题主要考查了扇形面积计算公式和旋转的性质的相关知识点,需要掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2);①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边OA的距离分别为 m, m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则线段AB扫过的图形面积是平方单位(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+EAF=180°,求证DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,CAB=90°.试求:

(1)AD的长;

(2)ABE的面积;

(3)ACE和△ABE的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ABC+DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S3=9,则S1的值为(  )

A. 18 B. 12 C. 9 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一艘货船和一艘客船同时从港口A出发,客船每小时比货船多走5海里,客船与货船速度的比为4:3,货船沿东偏南10°方向航行,2小时后货船到达B处,客船到达C处,若此时两船相距50海里.

(1)求两船的速度分别是多少?

(2)求客船航行的方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习过程中,对教材中的一个有趣问题做如下探究:

(习题回顾)已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=CEF;

(变式思考)如图2,在△ABC中,∠ACB=90°,CDAB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,则∠CFE与∠CEF还相等吗?说明理由;

(探究廷伸)如图3,在△ABC中,在AB上存在一点D,使得∠ACD=B,角平分线AECD于点F.ABC的外角∠BAG的平分线所在直线MNBC的延长线交于点M.试判断∠M与∠CFE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C为△ABD的外接圆上的一动点(点C不在 上,且不与点B,D重合),∠ACB=∠ABD=45°
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证: AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2 , AM2 , BM2三者之间满足的等量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案