精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AD、CE是两条高,连接DE,如果BE=2,EA=3,CE=4,在不添加任何辅助线和字母的条件下,请写出三个正确结论   (要求:分别为边的关系,角的关系,三角形相似的关系),并对其中三角形相似的结论给予证明.
边的关系
AC=AB
AC=AB

角的关系
∠CAB=∠B
∠CAB=∠B

三角形相似的关系
△BED∽△BCA
△BED∽△BCA
分析:在Rt△AEC中,由勾股定理知,AC2=AE2+CE2,解得AC=5,所以AC=AB=AE+BE=5,∠CAB=∠B;因为AD、CE是两条高,所以∠AEC=∠ADC=90°,即点A、C、D、E是在以AC为直径的圆上,根据圆内接四边形的性质:圆内接四边形的外角等于它的内对角知,有∠DEB=∠ACB,∠BDE=∠BAC,得△BED∽△BCA.
解答:解:有AC=AB=5,∠CAB=∠B,△BED∽△BCA.
证明:在Rt△AEC中,由勾股定理知,AC2=AE2+CE2,解得AC=5,
∴AC=AB=5,∠ACB=∠B.
又∵AD、CE是两条高,
∴∠AEC=∠ADC=90°,
∴点A、C、D、E是在以AC为直径的圆上,
∴∠DEB=∠ACB,∠BDE=∠BAC,
∴△BED∽△BCA.
点评:本题是一道结论开放性题答案不唯一,利用了等边对等角,四点共圆的判定,圆内接四边形的性质,相似三角形的判定和性质求解即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案