如图,经过原点的抛物线y=-x2+bx(b>2)与x轴的另一交点为A,过点P(1,)作直线PN⊥x轴于点N,交抛物线于点B.点B关于抛物线对称轴的对称点为C.连结CB,CP.
(1)当b=4时,求点A的坐标及BC的长;
(2)连结CA,求b的适当的值,使得CA⊥CP;
(3)当b=6时,如图2,将△CBP绕着点C按逆时针方向旋转,得到△CB′P′,CP与抛物线对称轴的交点为E,点M为线段B′P′(包含端点)上任意一点,请直接写出线段EM长度的取值范围.
(1)(4,0),2;(2)3;(3)4-≤EM≤3.
解析试题分析:(1)利用抛物线y=-x2+4x,求出点A的坐标及BC的长,
(2)过点C作CD⊥x轴于点D,利用△CBP∽△CDA,求出b的值.
(3)利用抛物线y=-x2+6x,求出BC,PC及EP的长,再分两种情况①当BC在CP上时,且M点与B′点重合时线段EM最短,②当BC在PC延长线上时,且M点与P′点重合时线段EM最长,求出线段EM长度的取值范围.
试题解析:(1)∵b=4,
∴抛物线y=-x2+4x,
在y=-x2+4中,
令y=0,得-x2+4x=0,
∴x1=0,x2=4
∴A(4,0)
令x=1,得y=3
∴B(1,3)
∵对称轴x=-=2
∴C(3,3)
∴BC=2
(2)如图1,过点C作CD⊥x轴于点D,
∵∠BCP+∠PCD=90°,∠DCA+∠PCD=90°,
∴∠BCP=∠DCA,
又∵∠CBP=∠CDA=90°
∴△CBP∽△CDA
∴
在y=-x2+bx中,
令x=1,则y=b-1
∴B(1,b-1)
又∵对称轴x=-,
∴BC=2(-1)=b-2,
∴C(b-1,b-1),
∴CD=b-1,BC=b-2,DA=ON=1,BP=b-1-=-1,
∴,
∴b=3.
(3)∵b=6,
∴抛物线y=-x2+6x
在y=-x2+6x中,
令x=1,得y=5
∴B(1,5)
∵对称轴x=
∴C(5,5)
∴BC=4,
∵P(1,),
∴P(1,3),
∴BP=5-3=2,
∴PC=
∵CP与抛物线对称轴的交点为E,
∴EP=EC=PC=,
①如图2,当BC在CP上时,且M点与B′点重合时线段EM最短,
∴EM=EP-(PC-BC)=-(2-4)=4-.
②如图3,当BC在PC延长线上时,且M点与P′点重合时线段EM最长,
EM=EC+P′C=+2=3.
∴4-≤EM≤3.
考点:二次函数综合题.
科目:初中数学 来源: 题型:填空题
二次函数的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.
【探究】:
(1)当n=1时,点B的纵坐标是 ;
(2)当n=2时,点B的纵坐标是 ;
(3)点B的纵坐标是 (用含n的代数式表示).
【应用】:
如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.
(1)求点C的坐标(用含n的代数式表示);
(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请求出点P的坐标;
(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线y=ax2+x+c与x轴交于点A(4,0)、B(-1,0),与y轴交于点C,连接AC,点M是线段OA上的一个动点(不与点O、A重合),过点M作MN∥AC,交OC于点N,将△OMN沿直线MN折叠,点O的对应点O′落在第一象限内,设OM=t,△O′MN与梯形AMNC重合部分面积为S.
(1)求抛物线的解析式;
(2)①当点O′落在AC上时,请直接写出此时t的值;
②求S与t的函数关系式;
(3)在点M运动的过程中,请直接写出以O、B、C、O′为顶点的四边形分别是等腰梯形和平行四边形时所对应的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点.
(1)求此二次函数的解析式;
(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求P点的坐标;
(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
抛物线与轴交于点A,B,与y轴交于点C,其中点B的坐标为.
(1)求抛物线对应的函数表达式;]
(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为G,求抛物线G所对应的函数表达式;
(3)将线段BC平移得到线段(B的对应点为,C的对应点为),使其经过(2)中所得抛物线G的顶点M,且与抛物线G另有一个交点N,求点到直线的距离的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com