精英家教网 > 初中数学 > 题目详情

【题目】已知在等边三角形的三边上,分别取点.

(1)如图1,,求证:;

(2)如图2,于点,,的长;

(3)如图3,,求证:为等边三角形.

【答案】1)证明见解析;(25;(3)证明见解析.

【解析】

1)根据等边三角形的性质得出,进一步证得,即可证得

2)根据等边三角形性质和30°的直角三角形性质,得出线段长之间关系,列出方程即可解答;

3)延长BDM,使BM=AD,连接ME,延长ECN,使CN=BE,连接FN,可得,再证,从而得出,再由三角形外角性质即可证得结论.

证明:(1)如图1中,

是等边三角形,

2)如图2中,是等边三角形,

同理可得:

,即:

解得:

3)如图3,延长BDM,使BM=AD,连接ME,延长ECN,使CN=BE,连接FN

AD=CF

BM=CF

是等边三角形,

中,

中,

又∵

又∵

为等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DEAG于点E,BFAG于点F.

(1)求BF和DE的长;

(2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将ADF绕点A顺时针旋转90°后,得到ABQ,连接EQ,求证:

(1)EA是∠QED的平分线;

(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,表示立方米).

每月用水量

单价

不超过的部分

2/

超出不超出

4/

超出的部分

8/

请根据上表的内容解答下列问题:

1)若某户居民2月份用水,则应收水费_________.元

2)若该户居民3月份用水(其中),则应收水费多少元(用含a的代数式表示,并简化).

3)若该户居民45两个月共用水5月份用水量超过了4月份),设4月份,用水,则该户居民45两个月共交水费多少元(用含x的代数式表示,并简化).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,ACBDCE均为等腰直角三角形,ACB=90°,B,C,D在一条直线上.

填空:线段AD,BE之间的关系为 .

(2)拓展探究

如图2,ACBDCE均为等腰直角三角形,ACB=DCE=90°,请判断AD,BE的关系,并说明理由.

(3)解决问题

如图3,线段PA=3,B是线段PA外一点,PB=5,连接AB,AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.

(1)请直接写出线段AF,AE的数量关系

(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABD中,ACBDC,点EAC上一点,连结BEDEDE的延长线交ABF,已知DE=ABCAD=45°

1)求证:DFAB

2)利用图中阴影部分面积完成勾股定理的证明,已知:如图,在△ABC中,∠ACB=90°BC=aAC=bAB=c,求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与直线y=﹣x+3分别交于x轴、y轴上的B、C两点,抛物线的顶点为点D,联结CDx轴于点E.

(1)求抛物线的解析式以及点D的坐标;

(2)求tanBCD;

(3)点P在直线BC上,若∠PEB=BCD,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级两个班,各选派10名学生参加学校举行的诗词大赛预赛.参赛选手的成绩如下(单位:分)

九(1)班:88,91,92,93,93,93,94,98,99,100

九(2)班:89,93,93,93,95,96,96,96,98,99.

(1)九(2)班的平均分是   分;九(1)班的众数是   分;

(2)若从两个班成绩最高的5位同学中选2人参加市级比赛,则这两个人来自不同班级的概率是多少?

查看答案和解析>>

同步练习册答案