精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.

(1)求证:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的长.

【答案】
(1)

证明:连结OD,∵DE是⊙O的切线,

∴∠ODE=90°,

∴∠ADE+∠BDO=90°,

∵∠ACB=90°,

∴∠A+∠B=90°,

又∵OD=OB,

∴∠B=∠BDO,

∴∠ADE=∠A.


(2)

解:连结CD,∵∠ADE=∠A,

∴AE=DE,

∵BC是⊙O的直径,∠ACB=90°.

∴EC是⊙O的切线,∴DE=EC,

∴AE=EC.

又∵DE=10,

∴AC=2DE=20,

在Rt△ADC中,DC= .

设BD=x,

在Rt△BDC中,BC2=x2+122, 在Rt△ABC中,BC2=(x+16)2-202,

∴x2+122=(x+16)2-202,解得x=9,

∴BC= .


【解析】(1)连结OD,根据切线的性质和同圆的半径相等,及圆周角所对的圆周角为90°,得到相对应的角的关系,即可证明;(2)由(1)中的∠ADE=∠A可得AE=DE;由∠ACB=90°,可得EC是⊙O的切线,由切线长定理易得DE=EC,则AC=2DE,由勾股定理求出CD;设BD=x,再可由勾股定理BC2= x2+122=(x+16)2-202,可解出x的值,再重新代入原方程,即可求出BC.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们用表示不大于的最大整数,例如:;用表示大于的最小整数,例如:.解决下列问题:

1= ,=

2)若=2,则的取值范围是 ;若=1,则的取值范围是

3)已知满足方程组,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分面积,并求出当a+b=16,ab=60时阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )

A.
B.
C.
D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.

1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)

2)在长方形纸片上截出两个完整的正方形纸片,面积分别为,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列能判定AB∥CD的条件有( )个.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A﹣22),B﹣3﹣2

1)若点C与点A关于原点O对称,则点C的坐标为   

2)将点A向右平移5个单位得到点D,则点D的坐标为   

3)由点ABCD组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:

我们知道,两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补,所以在某些探究性问题中通过构造平行线可以起到转化的作用.

已知三角板中,,长方形中,

问题初探:

1)如图(1),若将三角板的顶点放在长方形的边上,相交于点于点,求的度数.

过点,则有,从而得,从而可以求得的度数.

由分析得,请你直接写出:的度数为____________的度数为___________

类比再探:

2)若将三角板按图(2)所示方式摆放(不垂直),请你猜想写出的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的是( )
A. =±5
B. =﹣3
C.± =±6
D. =﹣10

查看答案和解析>>

同步练习册答案