精英家教网 > 初中数学 > 题目详情

如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=数学公式,DE+BC=1,求:∠ABC的度数.

解:延长BC到F,使CF=DE,连接AF(如图)
∵DE+BC=1,
∴BF=BC+CF=BC+DE=1
∵BE=AC,∠DEB=∠ACF=90°,DE=CF,
∴△BDE≌△AFC(SAS),
∵BD=
∴AF=BD=,∠B=∠1,
∴AF=BF,
∵∠B+∠2=90°,
∴∠1+∠2=90°,
∴∠ABC=30°.
分析:延长BC到F,使CF=DE,连接AF,利用边角边定理求证△BDE≌△AFC,然后证明出∠BAF=90°,即可求得∠ABC的度数.
点评:此题对初二学生来说是个难题,因学生在作辅助线时大多数是延长某一线段或作某线段的平行线等,像这种:延长BC到F,使CF=DE,学生一般考虑不到,因此是一道难题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG.
(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形.那么,构成菱形的四个顶点是
B,E,D,F
E,D,C,G
;构成等腰梯形的四个顶点是
B,E,D,C
E,D,G,F

(2)请你各选择其中一个图形加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC是⊙O的内接三角形,∠BAC=90°,AH⊥BC,垂足为D,过点B作弦BF交AD于点精英家教网E,交⊙O于点F,且AE=BE.
(1)求证:
AB
=
AF

(2)若BE•EF=32,AD=6,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中,∠CAB=30°,BC=5.过点A做AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中∠A=90°,AB=3,AC=4.将其沿边AB向右平移2个单位得到△FGE,则四边形ACEG的面积为
14
14

查看答案和解析>>

同步练习册答案