【题目】在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,
(1)求∠AOC的度数
(2)连接BO,试说明BO平分∠ABC
(3)判断AC、AE、CD的关系,并说明理由.
【答案】(1)120°;(2)详见解析;(3)AC=AE+CD
【解析】
(1)根据三角形的内角和等于180°求出,再根据角平分线的定义求出,然后根基三角形的内角和等于180°列式计算即可得解;
(2)作垂线,由角平分线定理即可得证.
(3)通过角之间的转化可得出△COD和△COF全等,进而可得出线段之间的关系,即可得出结论.
(1)∵∠ABC=60°,
∴,
∵AD,CE分别平分,
∴,
∴,
在中,
.
(2)如图,连接OB,作OM⊥AB于点M,ON⊥AC于点N,OG⊥BC于点G,
∵AD,CE分别平分,
∴OM=ON,ON=OG,
∴OM=OG,
由角平分线定理,
∴BO平分∠ABC.
(3)如图,在AC上截取AF=AE,
∵AD平分,
∴,
在△AOE和△AOF中,,
∴,
∴,
∵,
∴,
∴,
∴,
又∵(对顶角相等),
∴,
∵CE平分,
∴,
在△COD和△COF中,,
∴,
∴,
∵,
∴.
科目:初中数学 来源: 题型:
【题目】如图,点E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M.求证:
(1)AB∥CD;
(2)点M是线段EF的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.
(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.
(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?
(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两种包装盒,大盒比小盒可多装20克某一物品.已知120克这一物品单独装满小盒比单独装满大盒多1盒.
(1)问小盒每个可装这一物品多少克?
(2)现有装满这一物品两种盒子共50个.设小盒有n个,所有盒子所装物品的总量为w克.
①求w关于n的函数解析式,并写出定义域;
②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.
(1)求A、B两点的坐标及二次函数解析式;
(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:
(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。
(1)求证:GF⊥OC;
(2)求EF的长(结果精确到0.1m)。
(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)作出△ABC关于直线L称轴对称的图形。
(2)在上面中图中找出点A,使它到M,N两点的距离相等,并且到OH,OF的距离相等。
(3)如图:直线m表示一条公路,A、B表示两所大学。要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P。
(4)如图:画出△ABC关于Y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com